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Abstract We propose a new method to test the superior predictive ability (SPA) of
a benchmark model against a large group of alternative models. The proposed test is
useful for reducing potential data snooping bias. Unlike previous methods, we model
the covariance matrix by factor models and develop a generalized likelihood ratio
(GLR) test statistic for the above testing problem. The GLR test is also extended
to a stepwise GLR (step-GLR) test in the spirit of the step-RC test of Romano and
Wolf (Econometrica 73(4):1237–1282, 2005) and step-SPA test of Hsu et al. (J Empir
Financ 17(3):471–484, 2010). The step-GLR test can identify the most contributed
predictive models to the rejection of the null hypothesis. A Monte Carlo simulation
study shows that the GLR test is much more powerful and less conservative than
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the SPA test of Hansen (J Bus Econ Stat 23(4):365–380, 2005). We also present an
application to illustrate the use of the GLR test and make a comparison between our
GLR and Hansen’s SPA tests.

Keywords Data snooping · Generalized likelihood ratio · Reality check ·
Technical trading rules · Variance matrix estimation

JEL Classification C14 · C53

1 Introduction

Testing the superior predictive ability (SPA) of a specific forecasting procedure against
a group of alternative forecasting procedures is of importance in business and economic
forecasting. For example, in financial markets, quantitative analysis, such as a technical
trading rule,1 has been exhaustively used since W.P. Hamilton published a series of
papers in The Wall Street Journal in 1902. A good forecasting model with observed
superior performance may possibly come from pure luck instead of genuine forecasting
ability. White (2000) pointed out that “even when no exploitable forecasting relation
exists, looking long enough and hard enough at a given set of data will often reveal
one or more forecasting models that look good, but are in fact useless.” Therefore, it is
important to test whether a particular forecasting model outperforms a large group of
alternative competing models. For this purpose, Hansen (2005) proposed the so-called
SPA test. In this paper, we propose a new test for testing SPA.

Although the conclusions about predictive power of technical analysis are mixed in
the literature, there are numerous empirical studies to support using technical analysis.
See, for example, the papers by Sweeney (1988), Blum et al. (1994), Brown et al.
(1998), Gencay (1998), Lo et al. (2000), Savin et al. (2007), Hsu et al. (2010) and the
references therein. However, such evidence is likely to be criticized due to their data
snooping bias in testing SPA; see Lo and MacKinlay (1990), Brock et al. (1992), White
(2000), Hsu et al. (2010), among others.

Data snooping occurs when a set of data are repeatedly used for the purpose of
inference or model selection. This is due to the fact that when reusing such data, we
create the possibility that any satisfactory results may simply be obtained by chance
rather than by any merit inherent in the method yielding the results (White 2000). As
noted by Sullivan et al. (1999), “data snooping can result from a subtle survivorship
bias operating on the entire universe of technical trading rules that have been considered
historically.”

In general, the issue of testing SPA can be addressed by testing the null hypothesis
that the benchmark is not inferior to any alternative forecasting models. Diebold and
Mariano (1995) and West (1996) proposed tests for equal predictive ability, which
means that the forecasting ability of a model is the same as the benchmark. White
(2000) formulated the test for SPA as a large-scale simultaneous test for data snooping
and proposed the reality check (RC) test to solve the problem. Romano and Wolf

1 For example, the moving average rules and the filter rules used in quantitative finance.
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(2005) introduced a RC-based stepwise multiple test known as the stepM test, to
identify as many significant models as possible in the sense that they outperform
the benchmark. Based on the methodology proposed by White (2000), Hansen (2003)
suggested a procedure to test composite hypotheses by incorporating additional sample
information on nuisance parameters. Recently, Hsu et al. (2010) extended Hansen’s
SPA test to a stepwise SPA test which aims to identify predictive models in large-
scale and multiple testing problems. They found that technical analysis has significant
predictive ability prior to the inception of exchange traded funds in the US growth
markets.

As in White (2000) and Hansen (2003, 2005), we also consider testing SPA by
using the null hypothesis that the benchmark underperforms any alternative model.
Our test is a large-scale simultaneous test for SPA and has some advantages in the
following aspects.

First, both the RC test and Hansen’s SPA test, as well as their variants, do not
explicitly incorporate an estimate of the covariance matrix of the models or perfor-
mance measures (see Sect. 2.1 for definition) into the test statistics. This may result
in inefficient inference. With a belief that the dependence within a large number of
models is driven by a small number of unobservable latent factors (to be decided by the
data), we consider modeling the covariance matrix by a factor model, which assumes
that the covariance matrix is contributed by unknown common background noise and
underlying latent factors (see Sect. 3.1). This approach is particularly attractive when
the number of forecasting models is large relative to the sample size. According to
our simulations, Hansen’s (2005) SPA has much less power than ours. This is possibly
because Hansen’s SPA test has a nonunique null distribution depending on nuisance
parameters.

Second, by incorporating the covariance structure in our estimation, we extend the
generalized likelihood ratio (GLR) test of Cai et al. (2000) and Fan et al. (2001) for
testing SPA. As noted by Hansen (2003, 2005), his SPA test would be improved if
there was a reliable way to incorporate information about the off-diagonal elements
of the covariance matrix. Our modeling of the covariance matrix does not require
distributional assumptions. Therefore, our approach is semiparametric in nature.

Third, as Hansen (2005) suggested, the testing problem of composite hypotheses is
closely related to the problem of testing hypotheses in the presence of nuisance para-
meters, and the null distribution of his SPA test depends on these nuisance parameters.
In various scenarios, it is shown that the GLR test, as an extension to the likelihood
ratio test, has asymptotic null distribution independent of nuisance parameters. This
is referred to as the Wilks phenomenon (Wilks 1938). See, for example, Fan et al.
(2001) and Fan and Jiang (2005) for details. Moreover, the GLR test is asymptotically
optimal in the sense that it achieves the optimal rate of convergence in the context
of semi- and nonparametric settings; see, for example, Fan and Jiang (2005, 2007)
and Jiang et al. (2007). Therefore, it is reasonable to expect that our GLR test has the
above properties.

Fourth, following the idea of the step-RC test of Romano and Wolf (2005) and the
step-SPA test of Hsu et al. (2010), we extend the proposed GLR test to a stepwise
version, which we call the step-GLR test. This allows us to sequentially identify the
models that are superior to the benchmark.
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Finally, a bootstrap method is used to implement the proposed GLR test. Our
simulation shows that our test procedure is powerful and has the correct size.

The rest of this paper is organized as follows. In Sect. 2, we review the existing
tests for predictive performance. Section 3 describes our testing procedure in detail.
In Sect. 4, Monte Carlo simulation studies are presented to assess the effectiveness of
the proposed method and to compare it with Hansen’s SPA test. In Sect. 5, we present
an application to illustrate the practical usefulness of our GLR and step-GLR tests.
Section 6 concludes the paper.

2 A review of existing tests

2.1 Reality check test

Suppose we have m models for a forecasting purpose. Let dk,t be a performance
measure of the kth model relative to a benchmark model at time t for t = 1, 2, . . . , n
and k = 1, . . . , m. For each t, dk,t may be dependent across k. For example, for a stock
return rt at time t , let δk,t−1 be the trading signal with value 1 or −1, instructed by a
trader based on the k-th trading rule at time t − 1, where 1 and −1 correspond to long
and short positions, respectively. Then, πk,t = rtδk,t−1 is the profit yielded by the k-th
trading rule. Let the benchmark model correspond to k = 0. Then, dk,t = π0,t −πk,t . In
the framework of White (2000), to determine whether there is a model with predictive
superiority over the benchmark, one would like to test the null hypothesis:

Hk
0 : μk ≤ 0, for k = 1, 2, . . . , m, (1)

where μk = E(dk,t ). For the above trading example, the null hypothesis means that
there is no trading rule bringing positive mean profit. Data snooping arises when
inference for the null is drawn from the test of an individual hypothesis Hk

0 . White
(2000) circumvented the problem by invoking the RC test given by

RCn = max
1≤k≤m

√
nd̄k,

where d̄k = n−1 ∑n
t=1 dk,t for k = 1, 2, . . . , m. Let dt = (d1,t . . . , dm,t )

′,
d̄ = (d̄1, d̄2, . . . , d̄m)′, and μ = E(dt ). If {dt } is stationary, then under Assump-
tion 1 of Hsu et al. (2010),

√
n(d̄ − μ) converges in distribution to N (0,Ω), where

d̄ = ∑n
t=1 dt/n and Ω = limn→∞ Var(

√
n(d̄ − μ)). White (2000) used the least

favorable configuration (LFC), i.e., μ = 0, to derive the limiting null distribution,
max{N (0,Ω)}, of RCn , and proposed using a stationary bootstrap method to approx-
imate the null distribution. At significance level α, the bootstrapped critical value is
decided by the (1 − α)-th percentile of the bootstrap realizations of RCn . Once RCn

is greater than the critical value, the null hypothesis (1) is rejected. As Hansen (2003,
2005) pointed out, the RC suffers from two major drawbacks. “The first is that it is
sensitive to the inclusion of poor and irrelevant models in the space of competing
forecasting models. Since only binding constraints (μ = 0) matter for the asymptotic
distribution, the inclusion of poor model decreases the power of the test by increasing
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RC’s p value. The other one is that the power of the RC is unnecessarily low in most
situations. In other words, it is relatively conservative whenever the number of binding
constraints are small relative to the number of inequalities being tested.”

2.2 Superior predictive ability test

Under the same null hypothesis as that of the RC test, Hansen (2005) proposed a
studentized test

SPAn = max
{

max
1≤k≤m

√
nd̄k/σ̂k, 0

}
,

where σ̂ 2
k is a consistent estimator of σ 2

k = Var(dk,t ). The null distribution of SPAn

can be obtained similarly to that of the RC test, but with the bootstrapped distribution
re-centered. In fact, in Hansen’s SPA test, the mean E(dk) = μk is estimated by

μ̂k = d̄k · 1
(√

nd̄k/σ̂k ≤ −√
2 log log n

)
, k = 1, 2, . . . , m, (2)

where 1(·) denotes the indicator function whose value is one for a true argument and
zero otherwise. When μk = 0, μ̂k = 0 almost surely, and when μk < 0,

√
nd̄k/σ̂k ≤√

2 log log n with probability approaching one. Hence, μ̂k converges in probability to
μk under the null. Since

√
nd̄/σ̂ = √

n(d̄−μ)/σ̂−√
nμ/σ̂ , where σ̂ = (σ̂1, . . . , σ̂m)′,

and the division is operated componentwise. Hansen (2005) suggested adding
√

nμ̂/σ̂

to the bootstrapped distribution of
√

n(d̄ −μ)/σ̂ . This yields a better approximation to
the null distribution of SPAn, max{N (0,Ω0), 0}, and higher power than the RC test.

Motivated by the extension of the RC test to the step-RC test in Romano and Wolf
(2005), Hsu et al. (2010) extended Hansen’s SPA test to the step-SPA test. The step-
SPA allows for identifying significant models, yet it ought to be more powerful because
its null distribution does not depend on the LFC. However, in the construction of the
test statistic SPAn , the covariance matrix of dt is not used, which results in loss of
power when the covariance matrix is not diagonal. This motivates us to propose a new
testing procedure described below.

3 GLR test for SPA

3.1 Estimation

Consider the performance measures {dk,t }, and let dt = (d1,t , d2,t , . . . , dm,t )
′. Assume

that {dt }n
t=1 is strictly stationary. Let μ = E(dt ),Ω = Var(dt ), and et = dt −μ. Then,

{et }n
t=1 is also strictly stationary with mean 0 and covariance matrix Ω and there is a

strictly stationary process {εt } with marginal mean 0 and marginal covariance matrix
Im×m , such that et = Ω1/2εt , where Im×m is an m × m identity matrix. Thus, we can
write dt as

dt = μ + Ω1/2εt , for t = 1, 2, . . . , n. (3)
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In many applications, such as testing for the superior predictive performance of
trading rules in a stock market, there are a large number of trading rules to be inves-
tigated so that m might be large. For example, Sullivan et al. (1999) evaluated 7,846
technical trading rules, and Hsu et al. (2010) carried out their investigation based on
a total of 16,380 trading rules. This means that a sensible estimate of all elements of
Ω is infeasible, especially when m exceeds the sample size n.

In this paper, we propose to estimate Ω using its most useful information in the
spirit of principal component analysis (PCA). Specifically, we make a singular value
decomposition (SVD) of Ω ,

Ω = Q DQ′, (4)

where Q = (q1, q2, . . . , qm) is an m × m orthogonal matrix with q ′
i q j = 1, for i = j ,

and q ′
i q j = 0, for i �= j , and D is an m ×m diagonal matrix with decreasing diagonal

elements, the decreased eigenvalues of Ω . Motivated by the idea of Liu et al. (2008)
for clustering high-dimension and low sample size data in gene expression microarray
data analysis, we model the diagonal matrix D as

D = Sm×m + v2 Im×m, (5)

where Sm×m = diag{s1, . . . , sd∗ , 0, . . . , 0}, and d∗ is an unknown positive integer
determined from data. This model is appropriate if the dominated eigenvalues of Ω

or equivalently the d∗ major principal components are driven by d∗ (d∗ < m) latent
factors, while the remaining is caused by a common noise with mean zero and variance
v2. Usually d∗ is much smaller than m, according to many practical studies of PCA.
Let γi = si + v2, for i = 1, 2, . . . , d∗. Then, model (5) is equivalent to

D = diag
{
γ1, . . . , γd∗ , v2, . . . , v2

}
, (6)

where γ1 ≥ γ2 ≥ · · · ≥ γd∗ .
Model (6) can be understood as follows. Assume that dt is generated from the

following orthogonal factor model with d∗ (<m) latent common factors

dt − μ = L Ft + εt ,

where dt is an m×1 vector, L is an m×d∗ loading matrix, Ft is a d∗×1 vector of factors,
and εt is a d∗×1 common noise vector. Assume that Ft and εt are independent and that
E(Ft ) = 0, var(Ft ) = I, E(εt ) = 0, and cov(εt ) = v2 I . Then, var(dt ) = L L
+v2 I .
For the nonnegative definite matrix L L
, by the spectral decomposition theorem, there
are an orthogonal matrix Q and a diagonal matrix S = diag(s1, . . . , sd∗ , 0, . . . , 0) such
that L L
 = QSQ
. Hence,

Var(dt ) = QSQ
 + v2 I = Q DQ
,

where D = S + v2 I = diag{γ1, . . . , γd∗ , v2, . . . , v2} with γ j = s j + v2 for
j = 1, . . . , d∗. This is exactly our model in (5) or equivalently in (6). Let Q =
(q1, . . . , qm). Then, QSQ
 = ∑d∗

j=1 s j q j q

j and hence
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Var(dt ) =
d∗
∑

j=1

s j q j q


j + v2 I.

This is the model recently studied by Birbaum et al. (2013).
In general, μk can be estimated by d̄k , for k = 1, 2, . . . , m. Therefore, the residuals

from (3) can be calculated through êt = dt − d̄ , for t = 1, 2, . . . , n. Based on {êt }, the
covariance matrix Ω may be estimated by Ω̂ = 1

n−1

∑n
t=1 êt ê′

t . However, in practice,

the dimension m is generally large relative to the sample size n, and hence such Ω̂

cannot be a good estimator of Ω . In the following, we employ the SVD of Ω in (4) to
derive a better estimate.

As v2 reflects the variance of the common background noise shared by all alterna-
tive models, it can be estimated by v̂2 = (m(n − 1))−1 ∑n

t=1 ‖êt‖2. For the estimated
covariance matrix Ω̂ , we obtain its eigenvalues {γ ∗

i }m
i=1 and the corresponding nor-

malized eigenvectors {q̂i }m
i=1, where γ ∗

1 ≥ γ ∗
2 ≥ · · · ≥ γ ∗

m . Let Q̂ = (q̂1, . . . , q̂m).
According to (6), the matrix D can be estimated by the following thresholding esti-
mator:

D̂ = diag
{
γ̂1, γ̂2, . . . , γ̂m

}
,

where γ̂ j = (γ ∗
j − v̂2) ·1(γ ∗

j ≥ v̂2)+ v̂2. Therefore, by (4), the covariance matrix Ω is

estimated by Ω̂∗ = Q̂ D̂ Q̂′. Note that the number of latent factors, d∗, is automatically
estimated as the number of γ̂ j greater than v̂2. Although d∗ may not be estimated well,
we do not seek to estimate it accurately. Our aim is to estimate Ω in an appropriate
way, such that it would account for the majority of variability in the variable {dt } with
d∗ factors. This is in the same spirit as PCA. In fact, in our real data example, it is
shown that the resulting test is not sensitive to 20 % perturbation on the thresholding
value v̂2 for choosing the number of latent variables.

3.2 GLR test

The testing problem in (1) is a high-dimensional null hypothesis versus a high-
dimensional alternative. As the distribution of εt is unspecified, we do not have a
likelihood function and hence, the likelihood ratio test cannot be applied. Even though
a likelihood is available when the error distribution is specified, there will be too many
parameters in Ω and thus, it will be challenging to make efficient inferences for the
parameters. Cai et al. (2000) and Fan et al. (2001) proposed the GLR test to deal with
this problem. The GLR test has some good properties such as the Wilks phenomenon
and the optimal rate in power. See Fan and Jiang (2005, 2007) for details. Here, we
extend the GLR test to the current high-dimensional setting.

For any vector a, let ‖a‖ be the L2-norm of a. Define the residual sum of squares
under the null as

RSS0 =
n∑

t=1

∥
∥Ω̂∗− 1

2
(
dt − μ̂

) ∥
∥2

,
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where μ̂ = (μ̂1, μ̂2, . . . , μ̂m)′ with μ̂k defined in (2). Under the alternative, we define
the residual sum of squares as

RSS1 =
n∑

t=1

∥
∥Ω̂∗− 1

2 (dt − d̄)
∥
∥2

.

Following Cai et al. (2000) and Fan et al. (2001), we define our GLR test statistic as

Tn = mn

2
(RSS0 − RSS1)/RSS1, (7)

which compares the likelihood under the alternative with that under the null. The null
hypothesis is rejected when Tn is too large.

For various scenarios, the GLR statistic is asymptotically χ2-distributed with
degrees of freedom going to ∞ and independent of nuisance parameters. This property
allows one to use bootstrap methods to approximate the null distribution of Tn . The
GLR statistic in (7) uses the estimator Ω̂∗ of Ω to improve the power of test. If Ω

is not well estimated or even a naive estimate such as diag{σ̂ 2
1 , . . . , σ̂ 2

m} is used, the
test could still be used, but at the price of losing some power. Since we do not assume
any distribution for the GLR test, it can be used with any type of predicting models
considered in Sect. 2.1, including semi- and nonparametric methods.

3.3 Calculating the p value

We now introduce a (wild) bootstrap procedure to calculate the p value of Tn . This
method is similar in spirit to that in Cai et al. (2000). Given dk,t , we use the pro-
posed estimation method to compute the GLR statistic Tn and the residuals from the
alternative hypothesis:

ε̂t =
(
Ω̂∗)1/2 (

dt − d̄
)
, for t = 1, 2, . . . , n.

Then, we draw a sample {ε̂∗
t }n

i=1 from {ε̂t }n
t=1 using the stationary bootstrap method

as in Hsu et al. (2010) and compute

d∗
t = μ̂ +

(
Ω̂∗)1/2

ε̂∗
t , for t = 1, 2, . . . , n,

where μ̂ is the estimator of μ in (2) under the null. This forms a bootstrap sample
{d∗

t }n
t=1. Then, we use it to obtain the GLR statistic, denoted by T ∗

n , using the same
approach as for Tn . Repeating this procedure s times, for example, s = 600, we obtain
a bootstrap sample of the GLR statistic {T ∗(k)

n }s
k=1, which is then used to determine

the quantiles of Tn under H0. The p value of Tn is calculated by the relative frequency
of T ∗(k)

n bigger than Tn . Note that the above procedure draws bootstrap samples from
the residuals. Therefore, it is essentially a wild bootstrap method. Its consistency can
be established similarly to that in Fan and Jiang (2005).
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3.4 Stepwise GLR test

When the null hypothesis is rejected, it is often interesting to identify models that have
contributed to the rejection. Following the ideas of the step-RC test of Romano and
Wolf (2005) and the step-SPA test of Hsu et al. (2010), we extend the GLR test to a
stepwise version which is termed as the step-GLR test. We expect that the step-GLR
test is powerful because it inherits the advantages of the GLR test.

The idea is similar to the backward elimination method for variable selection or the
case-deletion procedure for regression diagnostics in linear models. First, we calculate
the GLR test statistic without using di,t :

Tn,−i = mn

2

(
RSS0,−i − RSS1,−i

) /
RSS1,−i , (8)

for i =1, 2,. . . , m, where RSS0,−i =∑n
t=1

∥
∥

(
Ω̂∗−i

)−1/2
(dt,−i −μ̂−i )

∥
∥2

, RSS1,−i =
∑n

t=1

∥
∥

(
Ω̂∗−i

)−1/2
(dt,−i − d̄−i )

∥
∥2, and “−i” means that the i th component of di,t is

not used. At a given significance level α0, the step-GLR test proceeds as follows.

(i) If H0 is rejected by Tn , we compute �Tn,i = Tn −Tn,−i , for i = 1, 2, . . . , m. The
top model that contributes most to the rejection of H0 is the one corresponding
to the largest �Tn,i , say �Tn,p1 . Remove the top model p1 from the collection of
competitive models and denote Tn,−p1 as Tn−1. Let H0,−1 be the null hypothesis
in (1) with k �= p1.

(ii) If H0,−1 can be rejected by Tn−1, we compute �Tn−1,i = Tn−1 − Tn−1,−i , for
i = 1, 2, . . . , m − 1. The top contributor to the rejection of H0,−1 by Tn−1 is the
model with the largest �Tn−1,i and is denoted as p2. Thus, the top contributed
models to the rejection of the null hypotheses are models p1 and p2.

(iii) If H0,−1 cannot be rejected by Tn−1, this stepwise procedure stops and the top
contributed model is p1.

(iv) Repeat (ii) and (iii) until all hypotheses are rejected.

If the above stepwise GLR testing procedure stops at the kth step, the top contributed
models to the rejection of the null hypotheses are p1 � p2 � · · · � pk , where “�”
represents a comparison between measurable contributions of two successive models.

4 Mont Carlo simulation studies

4.1 Data generating process

In this section, we evaluate the finite sample performance of the proposed method
using Monte Carlo simulations. We consider the same data generating process (DGP)
as in Hansen (2005), because it leads to non-diagonal covariance matrix Ω , which
may be better handled with our procedure. In the following, let us introduce the DGP.
We follow the same notation as Hansen (2005).
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Let the performance of the kth model relative to that of the benchmark model be
measured by a loss function defined as

dk,t = L
(
ξt , δ0,t−h

) − L(ξt , δk,t−h), k = 1, 2, . . . , m, (9)

where L(·, ·) is a loss function with two arguments, ξt is a random variable representing
the aspects of the decision problem that is unknown at the time when the decision is
made, and δk,t−h is the kth decision rule that is made h periods in advance. In particular,
δ0,t−h is the decision based on the benchmark model. For the trading example in
Sect. 2.1, δk,t−1 equals 1(or − 1) when a trader takes a long (or short) position at time
t − 1, and ξt is the return rt of the underlying asset at the period t . The kth model (or
trading rule) yields the profit πk,t = δk,t−hξt . Therefore, the loss caused by the kth
rule can be formulated as L(ξt , δk,t−h) = −δk,t−hξt . Since we evaluate forecasts in
terms of their expected loss given by

E(dk,t ) = E
[
L(ξt , δ0,t−h)

] − E
[
L(ξt , δk,t−h)

]
, for k = 1, 2, . . . , m,

we focus on dk,t rather than the loss function itself.
Next, we generate Lk,t = L(ξt , δk,t−h) from the model

Lk,t ∼ i id N
(
λk/

√
n, σ 2

k

)
, for k = 0, 1, . . . , m, and t = 1, 2, . . . , n.

The benchmark model has λ0 = 0. When λk > 0, it means that the kth model is worse
than the benchmark model; when λk < 0, the kth model is better than the benchmark.
Naturally, {dk,t } in (9) are correlated across k and hence the covariance matrix Ω of
dt is not diagonal. As expected, our test procedure performs better than Hansen’s SPA
in this case.

The experiment is designed to control the value of λk , which is equivalent to choos-
ing the poor and superior models. According to Hansen (2005), we set λ1 ≤ 0 and
λk ≥ 0, for k = 2, . . . , m. Therefore, the first alternative (k = 1) defines whether
the rejection probability corresponds to a type I error probability (λ1 = 0) or power
(λ1 < 0). The poor models are those with mean values being evenly spaced between
0 and λm = Λ0 (the worst model). This is to say that the values of λk are set as
λ0 = 0, λ1 = Λ1, and λk = (k − 1)Λ0/(m − 1), for 2 ≤ k ≤ m. Following Hansen
(2005), we set Λ0 at 0, 1, 2, 5, and 10, respectively. For the alternative models, we set
Λ1 = 0,−0.1,−0.2,−0.3,−0.4, and−0.5 for our GLR test and Λ1 = 0, 1, 2, 3, 4, 5
for Hansen’s SPA. Therefore, λ1 = Λ1 defines the local alternative that is being ana-
lyzed. When Λ1 = 0, the null hypothesis conforms with the alternative, and thus the
alternative is not distinguishable from the null. As Λ1 deviates away from 0 on the left,
the alternative becomes further away from the null. It is worth pointing out that the
values of Λ1 for our test have a range much less than that for Hansen’s SPA. Hence, it
should be more difficult to differentiate the local alternatives from the null. The vari-
ance reflects the quality of the model. The smaller the variance, the better the model.
Following Hansen (2005), we set σ 2

k = exp(arctan(λk))/2, which indicates that the
specification of the variance is Var(dk,t ) = Var(L0,t − Lk,t ) = 1/2 + Var(Lk,t ).
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4.2 Simulation results

We set m = 100 and n = 200 and 1,000. The bootstrap method is used to approximate
the null distribution of Tn . Given a sample, we calculate the GLR statistic Tn and use
s = 600 bootstrap replicates to get the p value of Tn according the procedure in
Sect. 3.3. If the p value is less than the significance level, we reject the null hypothesis.
To evaluate the power of the test, for each value of Λ1 (i.e., each alternative), we
compute the relative rejection frequencies of the null as the power of a test based on
1,000 simulations.

The results are reported in Tables 1 and 2 for the 5 and 10 % significance levels,
respectively. For comparison, results from Hansen’s SPA test are also reported. When
Λ1 = 0, in every panel in Tables 1 and 2, the relative frequencies of rejecting the null
by the GLR test are all closer to the nominal sizes than those by Hansen’s SPA test.
Therefore, the type I error of the GLR test is better controlled than that of Hansen’s
SPA test.

Instead of using a relatively coarse measurement, Λ1 = 0,−1,−2,−3,−4, and
−5, in Hansen’s test, we use Λ1 = 0,−0.1,−0.2,−0.3,−0.4, and −0.5 for the GLR
test. The results show that the power of GLR test approaches to one much faster than
that of Hansen’s SPA test. Regardless of the sizes and model specifications, the GLR
test dominates Hansen’s SPA test in terms of power.

In Table 1, the case where Λ0 = Λ1 = 0 refers to the situation that all the 100
inequalities are binding. It is the case discussed in White’s (2000) RC test, where all
the poor models are discarded. The relative rejection frequency is close to and less
than the nominal levels. For example, when we set α at 5 %, the relative rejection
frequency is 3 %, and when we set α at 10 %, the relative rejection frequency becomes
8.8 %. This may be caused by small sample sizes.

When the sample size n is increased from 200 to 1,000, the results become much
better as shown in Table 2. When Λ0 = Λ1 = 0, the relative frequencies of rejecting
H0 are 4.9 % for α = 5 and 9.0 % for α = 10 %. Therefore, the GLR test has
approximately correct size. It is also shown that Hansen’s SPA test has approximately
correct size as well. From Tables 1 and 2, one can see that, with the sample size
increasing, the GLR test gains power at a faster speed for large samples than for small
samples. For example, when the sample size is 1,000, the power of the GLR test is
almost one in the case of (Λ0,Λ1) = (0,−0.2). However, when the sample size is
200, the power of the GLR reaches one after the value of Λ1 decreases to −0.5.

Hansen’s SPA test cannot reject the null hypothesis when Λ1 = 1, while the GLR
test reaches power one even when Λ1 = −0.5. Similarly, we find that no matter
how poor the model is (which depends on the level of Λ0), our GLR test always
outperforms Hansen’s SPA test. Another important improvement is that our test is less
conservative than Hansen’s SPA test. For Hansen’s SPA test, the probability of type
I error shrinks fast as the value of Λ0 increases. For example, it is only 0.007 when
(Λ0,Λ1) = (10, 0). The frequency value is far away from the nominal level 5 %.
However, the probability of type I error for our GLR test is close to 5 %.

In summary, the above simulations demonstrate that the proposed GLR test is
much more powerful and less conservative than Hansen’s SPA test. This is possibly
due to the nature of the GLR test and the correlation structure incorporated into the
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Table 1 Relative frequencies of rejecting the null hypothesis under the null and alternative hypotheses
(m = 100 and n = 200)

Level: α = 0.05 Level: α = 0.10

Λ1 GLR Λ1 SPA Λ1 GLR Λ1 SPA

Panel A: Λ0 = 0

0.0 0.030 0 0.060 0.0 0.088 0 0.11

−0.1 0.048 −1 0.074 −0.1 0.099 −1 0.129

−0.2 0.172 −2 0.280 −0.2 0.331 −2 0.389

−0.3 0.609 −3 0.764 −0.3 0.761 −3 0.845

−0.4 0.960 −4 0.979 −0.4 0.988 −4 0.99

−0.5 1 −5 1 −0.5 1 −5 1

Panel B: Λ0 = 1

0.0 0.052 0 0.022 0.0 0.153 0 0.044

−0.1 0.123 −1 0.041 −0.1 0.288 −1 0.072

−0.2 0.409 −2 0.252 −0.2 0.613 −2 0.345

−0.3 0.789 −3 0.744 −0.3 0.920 −3 0.829

−0.4 0.977 −4 0.977 −0.4 0.993 −4 0.989

−0.5 0.999 −5 1 −0.5 1 −5 1

Panel C: Λ0 = 2

0.0 0.048 0 0.012 0.0 0.151 0 0.026

−0.1 0.118 −1 0.032 −0.1 0.261 −1 0.058

−0.2 0.421 −2 0.244 −0.2 0.690 −2 0.336

−0.3 0.849 −3 0.745 −0.3 0.933 −3 0.827

−0.4 0.994 −4 0.978 −0.4 1 −4 0.989

−0.5 1 −5 1 −0.5 1 −5 1

Panel D: Λ0 = 5

0.0 0.054 0 0.007 0.0 0.107 0 0.013

−0.1 0.160 −1 0.031 −0.1 0.236 −1 0.054

−0.2 0.516 −2 0.273 −0.2 0.617 −2 0.370

−0.3 0.907 −3 0.787 −0.3 0.944 −3 0.860

−0.4 0.999 −4 0.986 −0.4 0.999 −4 0.995

−0.5 1 −5 1 −0.5 1 −5 1

Panel E: Λ0 = 10

0.0 0.020 0 0.007 0.0 0.081 0 0.015

−0.1 0.112 −1 0.043 −0.1 0.220 −1 0.073

−0.2 0.499 −2 0.340 −0.2 0.640 −2 0.455

−0.3 0.913 −3 0.843 −0.3 0.956 −3 0.907

−0.4 1 −4 0.992 −0.4 1 −4 0.998

−0.5 1 −5 1 −0.5 1 −5 1
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Table 2 Relative frequencies of rejecting the null hypothesis under the null and alternative hypotheses
(m = 100 and n = 1,000)

Level: α=0.05 Level: α = 0.10

Λ1 GLR Λ1 SPA Λ1 GLR Λ1 SPA

Panel A: Λ0 = 0

0.0 0.049 0 0.048 0.0 0.090 0 0.100

−0.1 0.326 −1 0.064 −0.1 0.495 −1 0.122

−0.2 0.998 −2 0.282 −0.2 0.999 −2 0.390

−0.3 1 −3 0.762 −0.3 1 −3 0.840

−0.4 1 −4 0.980 −0.4 1 −4 0.990

−0.5 1 −5 1 −0.5 1 −5 1

Panel B: Λ0 = 1

0.0 0.070 0 0.017 0.0 0.226 0 0.039

−0.1 0.670 −1 0.036 −0.1 0.822 −1 0.069

−0.2 1 −2 0.252 −0.2 1 −2 0.342

−0.3 1 −3 0.740 −0.3 1 −3 0.814

−0.4 1 −4 0.978 −0.4 1 −4 0.985

−0.5 1 −5 1 −0.5 1 −5 1

Panel C: Λ0 = 2

0.0 0.067 0 0.009 0.0 0.146 0 0.021

−0.1 0.689 −1 0.029 −0.1 0.802 −1 0.054

−0.2 1 −2 0.242 −0.2 1 −2 0.322

−0.3 1 −3 0.737 −0.3 1 −3 0.798

−0.4 1 −4 0.979 −0.4 1 −4 0.983

−0.5 1 −5 1 −0.5 1 −5 1

Panel D: Λ0 = 5

0.0 0.045 0 0.005 0.0 0.085 0 0.008

−0.1 0.666 −1 0.028 −0.1 0.828 −1 0.042

−0.2 1 −2 0.267 −0.2 1 −2 0.306

−0.3 1 −3 0.777 −0.3 1 −3 0.784

−0.4 1 −4 0.987 −0.4 1 −4 0.981

−0.5 1 −5 1 −0.5 1 −5 1

Panel E: Λ0 = 10

0.0 0.017 0 0.005 0.0 0.098 0 0.005

−0.1 0.646 −1 0.042 −0.1 0.740 −1 0.039

−0.2 1 −2 0.335 −0.2 1 −2 0.299

−0.3 1 −3 0.835 −0.3 1 −3 0.778

−0.4 1 −4 0.994 −0.4 1 −4 0.980

−0.5 1 −5 1 −0.5 1 −5 1
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GLR statistic. We have also conducted simulations in other settings, but the results
are not reported here to save space. Our experience in simulations indicate that in
large samples our method generally works better than Hansen’s when the covariance
matrix Ω is not diagonal and is favorably comparable to Hansen’s when Ω is close to
diagonal. However, in small samples both methods might not work satisfactorily for
large dimensionality m.

5 An application of the GLR test

In this section, our aim is to compare the performance of GLR and SPA tests with a
real example. To this end, we consider the linear relationship between the monthly
return of the S&P 500 index denoted as Y , and a set of explanatory variables, which
are the monthly money supply (X1), federal funds rate (X2), unemployment rate (X3),
earnings–price (E–P) ratio of the S&P 500 index (X4), and dividend–price ratio of the
S&P 500 index (X5). These monthly data series are from February 2001 to October
2011.

The benchmark model is the model under the null hypothesis. The benchmark
model is either the random walk model or a model specifying Yt at a fixed value,
which is chosen to be 0, −0.5, 0.5, −1, and 1 %, respectively.

The collection of alternative models contains 31 linear regressions of the following
types:

Y ∼ Xi , for i = 1, 2, 3, 4, 5,

Y ∼ (Xi , X j ), for i �= j, and i, j = 1, 2, 3, 4, 5,

Y ∼ (Xi , X j , Xk), for i �= j �= k, and i, j, k = 1, 2, 3, 4, 5,

Y ∼ (Xi , X j , Xk, Xl), for i �= j �= k �= l, and i, j, k, l = 1, 2, 3, 4, 5,

Y ∼ (X1, X2, X3, X4, X5) .

We also include the lagged value(s) of Yt as explanatory variable(s) in each of the
aforementioned 31 models with the maximum lag order being six. When one lagged
variable is included as a regressor, it must be Yt−1; when two lagged variables are
included as regressors, they must be Yt−1 and Yt−2; and similarly, when five lagged
variables are included as regressors, they must be Yt−i , for i = 1, 2, . . . , 5. Therefore,
there are 223 models in total.

We examine the performance of the GLR and SPA tests through rolling samples.
The rolling sample size is 24, which means that the sample contains two-year monthly
data. All models are fitted to this sample and are used to forecast the one-step-ahead
monthly return. The next sample for estimation is obtained by rolling the former sample
forward by one step. Completion of this rolling sample procedure would result in a
collection of 124 forecast values of monthly returns under each model. As expected,
the collection of these forecast values is enough to evaluate forecasting performance
of the two tests. When the benchmark model is a random walk process, the one-step-
ahead forecast is simply the sample mean. The p values of GLR and SPA tests under
benchmark models are given in Table 3.
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Table 3 p values of the GLR
and SPA tests

Null hypothesis GLR SPA

H0 : −0.5 % 0.1940 0.3780

H0 : −1.0 % 0.0380 0.0200

H0 : 0.0 % 0.3580 0.7420

H0 : 0.5 % 0.5340 0.8400

H0 : 1.0 % 0.2300 0.4900

H0 : random walk 0.3340 0.6200

Table 4 Mean and standard
deviation of the performance
measures for the top five
contributed models in the
GLR test

Model Performance measures

Mean SD

Yt ∼ (
Yt−1, Yt−2

)
0.0036 0.0127

Yt ∼ (
Yt−1

)
0.0037 0.0113

Yt ∼ (
Yt−1, Yt−2, Yt−3

)
0.0038 0.0135

Yt ∼ (
X2, X4, Yt−1

)
0.0028 0.0112

Yt ∼ (
X2, X3, X5, Yt−1

)
0.0006 0.0182

Table 5 Mean and standard
deviation of the performance
measures for the contributed
models in the SPA test

Model Performance measures

Mean SD

Yt ∼ (X2, X4, X5) 0.0055 0.0143

Yt ∼ (
X2, X3, X4, X5, Yt−1

)
0.0054 0.0159

Yt ∼ (X2, X3, X4, X5) 0.0054 0.0142

Yt ∼ (
X2, X4, X5, Yt−1

)
0.0052 0.0152

Under the null hypothesis that no alternative is better than the above random walk
process, both tests cannot reject the null hypothesis. This finding is consistent with
a general belief of financial analysts about technical analysis. Most analysts tend to
believe that most models cannot outperform the moving average method in terms of
forecasting performance.

When the benchmark model specifies −1 % as the monthly return, both the GLR
and SPA tests reject the null hypothesis at the 5 % significance level. In this situation,
we conduct the step-GLR test and find 13 models which contribute to the rejection
of null hypothesis. The top five contributed models, as well as their mean and stan-
dard deviation of performance measures, are presented in Table 4. By conducting the
step-SPA test, we find that four models have contributed to the rejection of null hypoth-
esis. These four contributed models, as well as their mean and standard deviation of
performance measures, are presented in Table 5.

In terms of the GLR test, the top three contributed models are all autoregressive
models with lag orders up to three, and none of the exogenous variables contributed
to the rejection of the null hypothesis. In contrast, the four contributed models for the
SPA test in rejecting the null hypothesis include only one lagged variable, together
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Table 6 Sensitivity analysis of the p value of the GLR test with respect to the number of components

Null hypothesis v̂2 v̂2(1 + 20 %) v̂2(1 − 20 %)

p value Factors p value Factors p value Factors

H0 : −0.5 % 0.1940 19 0.1920 17 0.1920 20

H0 : −1.0 % 0.0380 17 0.0380 16 0.0380 20

H0 : 0.0 % 0.3580 20 0.3580 17 0.3580 21

H0 : 0.5 % 0.5340 18 0.5380 16 0.5320 20

H0 : 1.0 % 0.2300 17 0.2260 16 0.2320 19

H0 : randomwalk 0.3340 20 0.3420 18 0.3360 22

with X2, X3, X3 and X4 as explanatory variables. More specifically, it can be clearly
seen that only Yt−1 is included in all the top five contributed models under the GLR
test and explanatory variables X2, X4 and X5 are contained in all the four contributed
models under the SPA test.

Finally, as the GLR test is constructed based on the principal components of the
variance–covariance matrix Ω , one might be interested in analyzing the sensitivity of
this test with respect to the number of components. The number of components used
by the test is determined by v̂2. When this value is used, the number of factors selected
under each null hypothesis is presented in the third column of Table 6. When the value
of v̂2 is increased or decreased by 20 %, the number of factors selected under each
null hypothesis is given in the fifth or seventh column, respectively. It is clear to see
that the derived p values are not sensitive to a 20 % change in the threshold value v̂2

for choosing the number of latent variables. Therefore, this test is quite robust against
to the choice of v̂2 for determining the number of latent variables.

6 Conclusion

We have proposed the GLR and step-GLR tests to check the superior predictive ability
of a benchmark model against a large group of alternative models. To model the
performance of all alternative models relative to a benchmark model, we have explicitly
approximated the covariance matrix by model (6). This method is applicable when the
number of alternative models exceeds the sample size. A Monte Carlo simulation study
demonstrates that the power of GLR test is much higher than that of Hansen’s SPA test.
Our simulation results also show that the GLR test is less conservative than Hansen’s
SPA test. In addition to examining the predictive ability of technical trading rules and
empirical models, our test is also applicable to other multiple testing problems for the
predictive ability of various econometric models as well as the performance of mutual
funds and corporate managers. Our method is expected to work well in large samples
when the performance measures are correlated cross-individual models, funds, or
managers. However, if the sample size is small or the stationarity condition for {dt } is
not valid, the GLR test would not be expected to perform well. Further work such as
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deriving the asymptotic null distribution and the theoretical power of Tn is warranted
and is left as a future research topic.
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