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A SPECTRAL-BASED CUSUM TEST
OF EVOLUTIONARY CHANGE
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We develop a test of evolutionary change that incorporates a null hypothesis of
homogeneity, which encompasses time invariance in the variance and autocovariance
structure of residuals from estimated econometric relationships. The test framework is
based on examining whether shifts in spectral decomposition between two frames of data
are significant. Rejection of the null hypothesis will point not only to weak nonstationarity
but to shifts in the structure of the second-order moments of the limiting distribution of the
random process. This would indicate that the second-order properties of any underlying
attractor set has changed in a statistically significant way, pointing to the presence of
evolutionary change. A demonstration of the test’s applicability to a real-world
macroeconomic problem is accomplished by applying the test to the Australian Building
Society Deposits (ABSD) model.
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1. INTRODUCTION

An increasing interest in evolutionary explanations of economic phenomena, in-
cluding macroeconomic processes and behavior, has emerged over the past decade.
For a recent, although brief, survey of this literature, consult Foster and Wild
(1999a). Quantitative investigations of such phenomena have been based over-
whelmingly on the use of computer-generated simulations of theoretical represen-
tations based on nonlinear differential equation systems. Because of their nonlinear
form, these equations can produce complex trajectories and attractor sets that con-
tain multiple equilibria, quasi-periodic behavior and even chaos. These equations
can also mimic processes of structural change through changes in the topological
(qualitative) structure of the underlying attractor set if the investigator deliberately
and artificially induces system bifurication [see Haken (1977, 1983), Prigogine
(1984), Murray (1989), Coveney and Highfield (1990, ch. 5), Iooss and Joseph
(1990), Zhang (1991), and Foster and Wild (1996)].

There has been, in contrast, relatively little work undertaken on establishing
an econometric framework or methodology that is capable of explicitly detecting
and modeling evolutionary economic explanations of macroeconomic processes.
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One factor that has complicated such attempts involves the definition of evolution.
The term evolution means different things in different academic disciplines; for
example, the term evolution is associated with nonlinearity in functional form in
both the natural sciences and broader evolutionary economics literature [consult
Haken (1977, 1983, 1988), Weidlich and Haag (1982), Murray (1989), Coveney
and Highfield (1990), Weidlich (1991), Zhang (1991), and Foster and Wild (1996)).
On the other hand, in the time-series literature, the term evolution has been equated
with nonstationarity following the seminal work of Priestley (1965).

Conventional evolutionary economic interpretations emphasize model frame-
works and explanations that are embedded in a self-organizational approach to
system dynamics. Such explanations stress the importance of dissipative struc-
tures that exhibit structural development through parallel increases in organization
and complexity toward capacity limits [Foster and Wild (1999a, p. 111)]. These
processes possess the sigmoid shape conventionally associated with logistic pro-
cesses and can subsequently be modeled as logistic processes, possibly with aug-
mentation to include exogenous effects and endogenous interactive effects; see, for
example, Foster and Wild (1996, 1999a, 1999b). In this particular case, the validity
of the usual equilibrium/disequilibrium dichotomy that views time-series data as
a series of disequilibrium points between static equilibrium states is questionable
because of the inherent structural instability that arises as the capacity limit is
approached. Instead, such processes have emergent critical tendencies associated
with a “narrowing basin of attraction” during the saturation stage of the process,
leading to structural discontinuities associated with basin “spillovers” that can
generate new equilibrium states with different qualitative properties. Preliminary
attempts at devising an explicit econometric framework that can detect and model
such processes are presented by Foster (1992, 1994), Burley and Foster (1994),
and Foster and Wild (1999a, 1999b).

In more general terms, however, it is possible to interpret the term evolution
as conveying one or more generic and distinguishing properties such as time ir-
reversibility. It then follows that a close correspondence will exist between the
objective of detecting and modeling evolutionary processes and many develop-
ments that have occurred in the econometric/time-series literature. For example,
if we adopt the time-series convention of equating evolutionary change with non-
stationarity, then a close correspondence will exist between attempts to detect and
model evolutionary processes and the literature on nonstationarity, time-varying
models and estimation procedures, structural change, and regime-shifting models.
In the next section, the term “evolutionary change” is formally equated with weak
nonstationarity, which involves time variation in the variance and/or autocovari-
ance structure that could be associated with the emergence of different phases or
regimes of a process.

A general econometric methodology would have to encompass two different
but related aspects. The first is the development of a broad model framework
that would enable investigators to detect evolutionary change. This is a central
task because it would enable an assessment of whether the “non-evolutionary”
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techniques that permeate both macroeconomic and econometric theory are valid
approaches. The second task is fundamentally more difficult and involves the actual
modeling of evolutionary processes. This latter task is difficult because of the
extreme difficulties that arise in attempting to address complex, nonlinear theory
with econometric methods as acknowledged, for example, by Granger (1993).
Further complicating evolutionary modeling is the fact that there is no generic
definition of nonstationarity in the time-series literature, complicating attempts to
model processes with time-dependent structures. Most effort has probably been
expended upon the first task without most investigators necessarily associating
their work with the investigation of evolutionary phenomena, as broadly defined.
In this paper, we focus on the first aspect as well, that is, on the detection of
evolutionary change.

The structure of this paper is as follows: In the next section, certain method-
ological considerations are addressed. This is followed in Section 3 with the
development of an individual frequency test for homogeneity, culminating in a
joint Cusum test of homogeneity, termed the aggregate homogeneity (AH) test. In
Section 4, applicability of the test procedure is demonstrated by applying it to the
Australian Building Society Deposits (ABSD) example considered by Foster and
Wild (1999a). Section 5 of the paper contains some concluding comments.

2. SOME METHODOLOGICAL CONSIDERATIONS

In Foster and Wild (1999a), it is argued that evolutionary explanations of histori-
cal economic processes can be expected to have two components—a determinis-
tic component and a nondeterministic or stochastic component. The econometric
framework adopted by investigators should include both components. In this paper,
we restrict attention to univariate models.1 Heuristically, the following economet-
ric framework is proposed:

Yt = f
(
XT

t , β
) + νt , (1a)

νt =
∞∑

u=0

guεt−u, (1b)

where Yt is a dependent variable, β is a vector of parameters, Xt is a vector of
regressor variables, f is a function operator, νt is a disturbance, εt ≈ NI(0, σ 2),
and {gu} is a given sequence of constants satisfying

∑∞
u=0 g2

u < ∞. If we assume
that the vector of regressor variables is deterministic, then the first part of (1a),
f (XT

t , β), can be interpreted as capturing the “deterministic” part of the process
while the second part of (1a), νt , which is explicitly modeled by (1b), can be
interpreted as capturing the “stochastic” component of the economic process. Even
if (1a) contains lagged values of the dependent variable Yt , these variables can be
regarded as fixed and given from the perspective of what variables are directly
observable in the current time period t even though they are determined by a
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stochastic process. Furthermore, any dependence introduced by the inclusion of
such variables will be explicitly captured in (1b).

If f (XT
t , β) in (1a) contains stochastic regressors, then the deterministic/stoch-

astic dichotomy mentioned above will break down. In this case, the first part of
(1a) can be viewed as capturing the average behavior of the model with the aver-
ages being given by probability limits. Equation (1b) can be viewed as capturing
deviations from this average behavior. The methodological discussion that fol-
lows is not sensitive to whatever dichotomy is adopted—the main implication
associated with adopting either the deterministic/stochastic or average/deviation
interpretation relates to the different terminology one must adopt.

The structure of (1a) as determined by f is deliberately left general but could
include a nonlinear functional form.2 The only restriction, per se, is that the deter-
ministic part of the model is stationary in parameters.3

Equation (1b) models that part of the process not explained by the deterministic
model. For the purpose of detecting evolutionary change, it is sufficient that the
random process modeled in (1b) be restricted to a stationary general linear pro-
cess [see Priestley (1981, pp. 141–147)]. This representation then admits the most
general form of linear stationary time-series model identified in the time-series
literature. We define a non-evolutionary process as a process that admits the repre-
sentation outlined in (1a) and (1b), above, with the added proviso that the process
has a time-reversible probabilistic structure.4 In general, model frameworks that
utilize fixed coefficient linear stationary structures such as (1) can be viewed funda-
mentally as “non-evolutionary.” Estimation schemes based on such models, such
as OLS, Yule-Walker, and MLE, can be viewed similarly as “non-evolutionary
filters.”5

Given the econometric framework outlined in (1), a very broad definition of
evolutionary change is proposed. This definition encompasses the definition of
evolution adopted in the broader evolutionary economics literature which empha-
sizes the role of nonlinearity in functional form [see Zhang (1991) and Foster and
Wild (1996, 1999a)], as well as the definition of evolution adopted in the time-
series literature, which equates evolution with nonstationarity [see Priestley (1965,
1981, 1988) and Foster and Wild (1995)].

Formally, statistical definitions of evolutionary change will center around the
existence of time-irreversible structure associated with one of three potential gen-
erating mechanisms. The first mechanism arises when time-irreversible structure
is generated by nonlinearity in the functional form of (1a), given that the other as-
sumptions made about (1a) and (1b) hold—that is, (1a) is stationary in parameters
and (1b) is a stationary general linear process. The second mechanism generating
time irreversibility arises when the functional form of (1a) is linear in variables and
linear and stationary in parameters but (1b), while being stationary in parameters,
has a non-Gaussian distribution. These two particular scenarios have been dealt
with by Hinich and Rothman (1998). In this context, note that because nonlinearity
and non-Gaussianity do not imply time irreversibility, one has to directly establish
whether the process is time irreversible by employing tests like those documented
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by Ramsey and Rothman (1996) and Hinich and Rothman (1998), in addition to
conventional tests of Gaussianity and linearity as outlined by Hinich (1982), Subba
Rao and Gabr (1984), and Ashley et al. (1986), for example. If the process is time
irreversible, then this is conclusive proof that it is evolutionary.

The third source of time irreversibility arises when (1a) or (1b) is nonstationary
in parameters. In this context, note that parameter variation in (1b) might ultimately
reflect parameter variation in (1a) that is being captured in the residuals of esti-
mated relationships. In what follows, we assume, however, that (1a) is stationary
in parameters. Therefore, we restrict the possibility of parameter variation to (1b).

It is argued by Foster and Wild (1999a) that if the data-generating mechanism
(DGM) is evolutionary, then the presence of nonlinearity and/or nonstationarity in
the unexplained part of the process is unavoidable because the full intricacies of
these interactions cannot be completely modeled by the deterministic part of the
process represented by (1a). We focus on the third broad generating mechanism—
that is, where (1b) is nonstationary in parameters. We develop a test that is capable
of establishing whether (1b) is stationary in parameters. This constitutes a clear
restriction on both the definition and the type of evolutionary change that can be
detected by the test statistic developed in this paper; we are essentially adopting
the conventional time-series definition of evolution that equates evolution with
nonstationarity.

In developing this test, we adopt what is essentially an indirect approach. Specif-
ically, we make use of the fact that there is a correspondence between the sequence
of constant coefficients {gu} and autocovariance generating function (and there-
fore position and shape of the power spectrum) for the class of stationary general
linear processes. In fact, this correspondence is unique if the process is not only
stationary but also invertible [see Box and Jenkins (1970, p. 195) and Priestley
(1981, pp. 145–146)]. This uniqueness property, however, is not central to our
argument. Even if the process is not invertible, statistically significant changes in
spectral position or shape will still point to parameter variation and evolutionary
change in (1b).

Given that our stated aim is to detect evolutionary change, model (1) is non-
evolutionary if the error structure outlined in (1b) is homogeneous. This implies
that the variance/autocovariance structure of (1b) is stationary (time invariant). In
the time-series literature, both time- and frequency-domain tests of homogeneity
have been developed. The time-domain tests have centered around testing whether
the residual variance from regression models is constant [Brown et al. (1975)]. In
the frequency domain, however, tests of homogeneity have been associated with
tests of uniformity in spectral shape and have tended to focus on shifts in auto-
covariance structure. These tests have been based around comparison of spectral
density estimates, Kolmogorov-Smirnov tests applied to normalized integrated
(cumulative) spectra, and Kullback-Leibler spectral divergence tests that are ap-
plied to spectral ratios; for example, see Jenkins (1961), Priestley and Subba Rao
(1969), Priestley (1981, pp. 475–488; 1988), Durlauf (1991), and Fong and Ouliaris
(1995).
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The concept of heterogeneity (or evolutionary change) developed in this paper
encompasses both of the preceding time-series definitions. Specifically, shifts in
variance and autocovariance structure, through their effect on both the magnitude
and the shape of power spectra, will constitute legitimate forms of heterogeneity,
which can be detected, in principle, by the test statistic developed in this paper.

The type of heterogeneity being addressed in this paper, and implications for
statistical inference, closely follow concerns expressed by Keynes in his famous
debate with Tinbergen in the late 1930’s and early 1940’s about the role of Econo-
metrics; see Keynes (1939) and Tinbergen (1940). Keynes argued that:

Put broadly, the most important condition is that the environment in all relevant
respects, other than the fluctuations in those factors of which we take particular
account, should be uniform and homogeneous over a period of time. We cannot be
sure that such conditions will persist in the future, even if we find them in the past.
But if we find them in the past, we have at any rate some basis for an inductive
argument. [Keynes (1939, p. 566)]

Furthermore, he not only stressed the importance of homogeneity, but proposed
the following testing scheme:

The first step, therefore, is to break up the period under examination into a series of
sub-periods, with a view to discovering whether the results of applying our method
to the various sub-periods taken separately are reasonably uniform. If they are, then
we have some ground for projecting our results into the future. [Keynes (1939, pp.
566–567)]

This procedure was viewed by Keynes as a way of testing whether the underlying
properties of the estimated process were statistically stable [Keynes (1973, ch. 32)].

In the time-series literature, this concept of uniformity is very closely related to
a particular concept of stationarity, which has been termed relative stationarity by
Parthasarathy and Varadhan (1964, pp. 68–69) and Brillinger (1981, p. 22). The
homogeneity test statistic developed in this paper can be viewed, alternatively, as a
test of weak relative stationarity. From a theoretical perspective, the importance of
the concept of relative stationarity follows from the fact that, given the additional
assumption of stochastic continuity, we know that a stationary extension of the
process exists over all time [Parthasarathy and Varadhan (1964, p. 68), Brillinger
(1981, p. 22)]. In this respect, the definition of a stationary extension implies that
there exists a process defined for all time whose distribution would coincide with
the distribution of our observed process when the time index of the former process
is limited to the one corresponding to the observed sample period [Parthasarathy
and Varadhan (1964, p. 65)]. The clear implication of Parthasarathy and Varadhan’s
work is that if the process is not relatively stationary over the sample period, then
a stationary extension will not exist, ultimately bringing into question the validity
of asymptotic theory based upon the concept of asymptotic stationarity which
fundamentally underpins the notion of limiting distribution.

Associated with this observation is the further fact that definitions of asymptotic
stationarity are predicated upon the assumption of a fixed parametric structure; see
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Priestley (1981, pp. 121–147), for example. This implies, for the class of station-
ary general linear processes, a constant (stationary) autocovariance structure that
would require, in turn, the fulfilment of the relative stationarity condition. Other-
wise, the correspondence between the parametric structure and the autocovariance
structure would be violated, leading to parameter variation and evolutionary change
in (1b).

The violation of the concept of relative stationarity and associated change in
the limiting distribution of the random process modeled by (1b) or, equivalently,
with the associated parameter variation in (1b), are consistent, in principle, with
the notion of moving equilibrium or changing basin of attraction mentioned by
Foster and Wild (1999a). In this respect, changes in the limiting distribution would
reflect statistically changes in the equilibrium properties of the process, pointing
to the presence of evolutionary change.

It is also evident from conventional time-series definitions of time reversibility
that evolutionary change in (1b) implies time irreversibility because evolutionary
change in (1b) implies weak nonstationarity. This fact follows from conventional
definitions of time reversibility because it is possible to show that time reversibility
implies stationarity and nonstationarity implies time irreversibility [see Lawrance
(1991), Ramsey and Rothman (1996), and Hinich and Rothman (1998)]. There-
fore, evidence of evolutionary change in (1b) involving the violation of the rela-
tive stationarity condition will, in principle, confer on the random process being
modeled by (1b) properties conventionally associated with evolutionary economic
processes, namely, a changing equilibrium structure and a time-irreversible prob-
abilistic structure.

The type of testing procedure explicitly advocated above by Keynes is quite
different from the standard testing procedures based on auxiliary regressions or
sequential techniques such as recursive least squares (RLS). The type of hetero-
geneity alluded to above by Keynes is more likely to be directly detected from
the use of moving window regression techniques [see Fama and MacBeth (1973),
Brown et al. (1975), Ploberger and Kramer (1992), Andrews (1993), Chu et al.
(1995), and Foster and Nelson (1996)]. Investigators, however, have employed
the rolling window method as primarily a graphical or descriptive device, with
particular emphasis on assessing variation in estimated coefficients.6

There is also a question mark over the ability of conventional diagnostic tests
to detect certain forms of heterogeneity that involve smooth (or subtle), but ulti-
mately significant, time variation in structure associated with different “phases” or
regimes. For example, Foster and Wild (1999a) found evidence pointing to the ex-
istence of heterogeneity involving changing patterns of serial dependence in a set
of residuals that passed all of the standard diagnostic tests activated in the PC-Give
8 econometric package [Doornik and Hendry (1994)]. This evidence was based on
applying the concept of evolutionary spectra [consult Priestley (1965, 1981, 1988),
Cohen (1989), Artis et al. (1992), and Foster and Wild (1995)]. These authors found
that the power spectra associated with the first frame of 100 observations of the
standardized residuals from the estimated equation appeared to be qualitatively
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FIGURE 1. Plot of power spectrum in frame 1, frame size = 100.

FIGURE 2. Plot of power spectrum in frame 151, frame size = 100.
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FIGURE 3. Time path of residual variance, frame size = 100.

different from the power spectra of a non-overlapping frame containing the last
100 observations (frame 151). Plots of these two power spectra with 95% confi-
dence intervals are contained in Figures 1 and 2. These same authors also found
evidence of significant trends in the time path of the residual variance; see Foster
and Wild (1999a, p. 127) and Figure 3.

The test that is developed in the next section of the paper will formalize the
ideas of Foster and Wild (1996, 1999a, 1999b) by attempting to rigorously verify
statistically the qualitative change alluded to in the aforementioned papers. The
test also builds upon the aggregate test outlined by Wild (1996).

3. AGGREGATE HOMOGENEITY (AH) TEST STATISTIC

The objective of the test is to determine whether the spectral decomposition asso-
ciated with one frame is the same as the spectral decomposition associated with
another frame in a statistical sense.7 This means that any variation in spectral de-
composition between these two frames should be able to be attributed to random
chance. If the variation is greater than what can be reasonably attributed to random
chance, then evidence of heterogeneity and nonstationarity in the second-order
moment structure of the process will be forthcoming.

In Wild (1996), the following test statistic is proposed:

ts(k) = f (i, k) − f ( j, k) (2)
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where f (i, k) is the nonnormalized spectral density estimate for frame i and fre-
quency k, and with variables i and j denoting particular data frames. The formulas
used to estimate f (i, k) are listed in the Appendix.

In calculating the test statistic, we use natural logarithms of spectral density
estimates because this transformation ensures that each transformed spectral esti-
mate will have equal variance [Rao and Shapiro (1970, p. 211)]. Therefore, denote
each transformed spectral density estimate by capital letters; that is,

F(i, k) = 	n[ f (i, k)], (3)

with (2) now becoming

TS(k) = F(i, k) − F( j, k). (4)

The methodology underpinning the test procedure is as follows. If the difference
TS(k) is small relative to its standard deviation, then no significant change between
the two frames would have occurred at frequency k. However, if the difference
is large relative to its standard deviation, then it is likely that structural change
has occurred between the two frames at frequency k, indicating the presence of
heterogeneity and evolutionary change. Therefore, to apply the test, we need to
determine the probability distribution of the change in spectral decomposition
between the two frames at frequency k.

The distribution theory of the individual frequency test is based on standard dis-
tribution theory associated with spectral density estimates. The following assump-
tions will guarantee the properties we require in order to develop the individual
frequency test statistic:

Assumption 1. The process is assumed to have an absolutely summable auto-
covariance structure.

Assumption 2. All moments up to at least the fourth order exist, and are sta-
tionary.

Assumption 1 is a finite-dependence (or mixing) assumption and guarantees
the existence and continuity of the nonnormalized spectral density function for all
frequencies w in the principal domain (−π, π ) [Parzen (1957, p. 330), Brillinger
(1981, p. 24), and Priestley (1981, p. 416)]. Note in particular that Assumption 1
rules out the possibility of singularities associated with long memory processes as
dealt with by Hidalgo (1996), for example. Assumption 2 contains the necessary
higher-order moment restrictions required to prove the asymptotic normality of
spectral estimates while also ensuring that the fourth-order cumulant structure
is absolutely summable—a condition required in the derivation of asymptotic
expressions for variance and covariance of spectral estimates [see Parzen (1957,
pp. 332–333), Anderson (1971, pp. 531, 534), Priestley (1981, p. 469) and Andrews
(1991, pp. 823–824)].
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The periodogram can be viewed as a sample version of the nonnormalized
spectral density function. It can be shown that for each (and all) frequencies w in
the principal domain (−π, π ), the periodogram is an asymptotically unbiased but
inconsistent estimator of the nonnormalized spectral density function [Priestley
(1981, pp. 417, 420–421)].

To construct consistent estimates of the nonnormalized spectral density func-
tion h(w), lag windows have been conventionally used. Under suitable regularity
conditions on the window functions, we can obtain a consistent estimate of the
nonnormalized spectral density function [Brillinger and Rosenblatt (1967, pp. 157–
158), Brillinger (1981, pp. 95, 123–125), and Priestley (1981, p. 451)]. The Parzen
lag window employed in empirical work in this paper satisfies these conditions
[Priestley (1981, p. 451)].

We then verify that, for scale parameter windows such as the Parzen window,

lim
N→∞

E{ĥ(w)} = h(w), all w (5)

lim
N→∞

[
N

M
Var {ĥ(w)}

]
= (1 + δk)h2(w)

1

N

[
(N−1)∑

s=−(N−1)

λ2(s)

]
, (6)

and

lim
N→∞

[
N

M
cov {ĥ(w1), ĥ(w2)} = 0

]
, w1 �= ±w2, (7)

where N is the sample size, M is a window truncation parameter, and h2(w) is the
second-order derivative of the true spectral density function at frequency w [consult
Brillinger and Rosenblatt (1967, p. 159), Anderson (1971, p. 531), Brillinger (1981,
pp. 135–136, 143–145, 147–151), and Priestley (1981, pp. 454–457)].

The asymptotic normality of spectral estimates can be established under the
conditions listed in Assumptions 1 and 2 [consult Anderson (1971, pp. 534–540),
Brillinger (1981, p. 149), and Priestley (1981, p. 469)]. In general, given Assump-
tions 1 and 2, spectral estimates at any fixed number of frequencies will have a
limiting joint normal distribution with variances and covariance given by (6) and
(7). It also follows as a consequence of both asymptotic Gaussianity and (7) that
the spectral estimates also will be asymptotically independent. Furthermore, be-
cause the “raw” spectra are asymptotic independent normal random variates, the
logarithmically transformed spectra will also be asymptotic independent normal
random variates [Priestley (1981, p. 471)].

Note that the statistical theory developed in this paper depends crucially on the
assumption that spectral density estimates have an asymptotic normal distribution.
From the perspective of large sample theory, this is nonstandard. In the standard
literature, the asymptotic distribution of the raw periodogram is chi square with
two degrees of freedom for w �= 0 or π , and chi square with one degree of freedom
if w = 0, π . If the raw periodogram is smoothed using one of the standard lag
windows, then the asymptotic distribution will be chi square with the appropriate
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degrees of freedom given by each window’s respective equivalent degrees of free-
dom ν, see Table 6.2 in Priestley (1981, pp. 466–467). In the case of the Parzen
lag window, ν = 3.708614 ∗ (N/M). For standard windows such as the Parzen
window, (N/M) → ∞, so that ν → ∞ as N → ∞. The normality assumption is
valid asymptotically because the χ2

ν distribution tends to a normal distribution as
ν → ∞; see Priestley (1981, p. 469) and Diggle (1990, pp. 103–104).

In large sample approximations, the normal distribution will only be a good ap-
proximation if the effective degrees of freedom ν are relatively large in magnitude.
This is more likely to be the case if the sample size N is much larger than the win-
dow truncation parameter M . This, in turn, will produce an estimate of the spectral
density that is very smooth, which requires, in turn, that the true spectral density
be smooth. Furthermore, if N is large relative to M , then neighboring frequencies
are likely to be more correlated rather than independent. It will certainly be the
case that the smaller is the value of M , the larger will be the bandwidth of the
window, requiring that two frequencies must be separated by a greater magnitude
if they are to be approximately uncorrelated; see Priestley (1981, pp. 456–457,
527). This could mean that some frequencies might have to be skipped in forming
the Cusum test statistic.8

The TS(k) statistic will be asymptotically independently normally distributed
because the statistic is, by construction, a linear combination of the F(i, k)’s
which are themselves asymptotically independently normally distributed vari-
ates. We now verify that the mean and variance of the TS(k) statistic are 0 and
(K m/N )(1 + δk) ∗ {2 − 2 ∗ R j }, respectively.

We prove that E[TS(k)] = 0 holds identically.9 To prove this, we use the result
that

E[F(i, k)] = Fk + 6

M2
h2(w) + O

(
log N

N

)
, (8)

for frame i , where the term F(i, k) is the spectral density estimate associated with
frame i and frequency k, and Fk is the true spectral density estimate at frequency
k. The term (6/M2)h2(w) denotes the asymptotic expression for bias associated
with the Parzen window with the term h2(w) denoting the second-order derivative
of the true spectral density function at frequency w. The term O(logN/N ) denotes
the bias attributable to the periodogram itself [see Priestley (1981, pp. 458, 462)
and Hinich (1994)].10 We assume that the same smoothing kernel is applied to
each frame. Given equation (8), equation (4) gives

E[TS(k)] = E[F(i, k)] − E[F( j, k)]

= Fk + 6

M2
h2(w) + O

(
log N

N

)
−

[
Fk + 6

M2
h2(w) + O

(
log N

N

)]
= 0. (9)

The “blurring” effect due to the bias in finite samples associated with the use of
the Parzen lag window and the periodogram itself cancel, as do the Fk’s under the
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null hypothesis of homogeneity, giving a difference of zero. Therefore, (9) states
that the bias will cancel provided that two factors are fulfilled: First, the shape and,
therefore, curvature of the true spectra are the same, which is assumed under the
null hypothesis of homogeneity. Second, the same smoothing kernel (and therefore
parameters M and N ) are applied to each frame.

The variance of the TS(k) statistic, denoted Var [TS(k)] is given by

Var [TS(k)] = Var[F(i, k) − F( j, k)]. (10)

This follows from the fact that TS(k) is, for each k, a linear combination of
random variates because both F(i, k) and F( j, k) are random variates. We then use
the formula

Var (X ± Y ) = Var (X) + Var (Y ) ± 2 Cov (X, Y ), (11)

and express (10) as

Var [TS(k)] = Var[F(i, k)] + Var[F( j, k)] − 2 ∗ Cov {F(i, k), F( j, k)}. (12)

We use the following expressions for asymptotic variance and covariance [Rao
and Shapiro (1970, p. 216)]:

Var [ f (i, k)] =a (K M/N ) f 2
k (1 + δk), (13a)

Cov[ f (i, k), f ( j, k)] =a (K M/N )[c2(i, j)k + q2(i, j)k](1 + δk), (13b)

where the symbol
a= denotes “asymptotically equal to,” K is dependent upon the

particular lag window adopted in spectral estimation, and c2(i, j)k and q2(i, j)k
are cospectral and quadrature spectral estimates at frequency k for the pair of series
Xi , . . . , Xi+N−1 and X j , . . . , X j+N−1 respectively.11 The term δk takes the values

δk =
{

1 if k = 1 or MF + 1
0 otherwise

[see Priestley (1981, p. 455)], where parameter MF + 1 is an integer that denotes
the total number of individual frequencies that are to be estimated.

Using the arguments of Rao and Shapiro (1970, p. 216), we obtain, after taking
the natural logarithm of spectral estimates,

Var [F(i, k)]
a= (K M/N )(1 + δk), (14a)

Cov[F(i, k), F( j, k)]
a= K M

N

c2(i, j)k + q2(i, j)k

f 2
k

(1 + δk)

a= (K M/N )(1 + δk) ∗ R2(i, j)k, (14b)

where R2(i, j)k = R j is the coherence between the series (i.e., between frames
i and j) at frequency k.12 The formulas used to estimate c(i, j)k, q(i, j)k, and
R2(i, j)k are listed in the Appendix.
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Now, substituting (14a) and (14b) into (12), we obtain

Var [TS(k)]
a= (KM/N )(1 + δk) + (KM/N )(1 + δk) − 2 ∗ (KM/N )(1 + δk) ∗ R j .

(15)

Collecting the common term (KM/N )(1 + δk), we obtain

Var [TS(k)]
a= (KM/N )(1 + δk) ∗ {2 − 2 ∗ R j }. (16)

To activate the test, it is assumed that the desired resolution bandwidth is known
by the investigator. In practical terms, this will mean that the following “param-
eter” settings have been predetermined: the frame length (N ), the number of fre-
quencies to be estimated (M F + 1), and the truncation parameter used in the lag
window (M).

The following steps are then performed:

1. Calculate the variance for each frequency k from (16), which is termed VARF(k).
2. Compute the natural logarithms of the spectral estimates for frames i and j .
3. Compute the difference TS(k):

TS(k) = F(i, k) − F( j, k). (17)

and square it.
4. Compute the test statistic TSS(k):

TSS (k) = TS(k)2 / VARF(k), (18)

where TS(k) is computed in step (3) and VARF(k) in step (1).
Under the null hypothesis of homogeneity, the TSS(k) statistic will be, for

each frequency k, an asymptotically independently normally distributed variate.
Moreover, the form of the test statistic outlined in step (4) is a squared standard
normal variate. As such, it will have, for each frequency k, a chi-square distribution
with one degree of freedom [see Rao and Shapiro (1970, p. 218)].

The joint test statistic we consider is a Cusum test statistic, termed the aggregate
homogeneity (AH) test statistic, and is obtained by summing the individual test
statistics TSS(k) [cf. equation (18)], for all k; that is,

AH =
MF+1∑
k=1

TSS(k). (19)

Because the individual test statistic TSS(k) is asymptotically independent and has
a chi-square distribution with one degree of freedom for each k, the AH test statistic
will have a chi-square distribution with MF + 1 degrees of freedom.

It is demonstrated by Wild (2001) that the AH test has reasonable size properties.
Specifically, the size results were generally conservative for small N , M , and
MF + 1 and tend to converge toward their nominal levels as the sample size is
increased after typically becoming slightly more conservative in moderate samples.



SPECTRAL TEST OF EVOLUTIONARY CHANGE 399

The issue of spectral shape was found to be important only in small samples and
made little difference to the size results obtained in moderate and large samples.

When the number of estimated frequencies MF + 1 was increased substantially,
for example, from 11 to 61, problems emerged. Specifically, the AH test statistic
tended to significantly overreject in small samples. This tends to correct itself in
moderate and large samples. Furthermore, the power tests documented by Wild
(2001) successfully demonstrate the AH test’s capabilities in detecting shifts in
variance and autocovariance structure.

The AH test statistic’s applicability to a real-world macroeconomic problem
is demonstrated by applying the test to the Australian Building Society Deposits
(ABSD) example investigated by Foster and Wild (1999a).

4. THE AUSTRALIAN BUILDING SOCIETY DEPOSIT (ABSD)
EXAMPLE REVISITED

In this section, we apply the AH test to the ABSD example investigated by Foster
and Wild (1999a). This provides a very clear example of a logistic-diffusion process
with emergent self-organizational features culminating in a phase of saturation
in the early 1980’s with inherent instabilities [see Foster and Wild (1999a, pp.
118, 121)]. The data we use in this section are the set of residuals obtained from
the ABSD augmented logistic regression equation outlined by Foster and Wild
(1999a) for the sample period November 1967 to September 1988. These residuals
were calculated using the Pc-Give 8 econometric package [Doornik and Hendry
(1994)] by computing the one-step residuals from the estimated relationship and
then standardizing by dividing each residual by the standard error of the estimated
regression equation. The time path of these residuals is documented in Figure 4.

In the results reported below, we use the coherence to measure dependence be-
tween frames and adopt the following parameter settings: the frame size (N ) = 100,
number of estimated frequencies (MF + 1) = 11, and truncation parameter
(M) = 10.

The descriptive statistics of the original set of residuals from the ABSD logistic
regression equation are listed in Table 1. Clearly, the mean of the process is zero.
Note further that the set of residuals does not “trip” the normality test. This test
is conservative in small samples as simulations have suggested a bias toward
the rejection of the null hypothesis of normality [Doornik and Hendry (1994)].
Therefore, if we cannot reject the null, then this result is “believable” with regard
to the falsification of the null hypothesis.

The coherence is used to measure dependence between frames. The coherence
can be viewed as measuring the correlation between the two frames as a function
of frequency and can take values between 0 and 1. It has the same interpretation
as given conventionally to the coefficient of multiple correlation. The coherence
between the first and last frames is documented in Table 2.

The low coherence values listed in Table 2 would indicate that the two frames can
be regarded as being approximately independent. This can be confirmed formally
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TABLE 1. Descriptive statistics of original source series

Statistic Value

Mean −0.126E-10
Std dev 0.963
Skew −0.205
Kurtosis 0.242
C(6) −2.701
Max value 2.51
Min value −2.95
Fourth-order moment 2.79
Fourth-order cumulant 0.208
P-value for the Bowman and Shenton 0.307

normality test

FIGURE 4. Time path of standardized residuals, November 1967–September 1988.

by employing a test to determine the cut-off value for the coherence for a particular
frequency, above which the null hypothesis of zero coherence (independence)
can be rejected, signifying dependence between the two frames at that particular
frequency. The test statistic has the following form and distribution:

2M |ŵi j (k)|
(1 − |ŵi j (k)|) = F2,4M , (20)
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TABLE 2. Coherence for frames 1 and 151

Frequency Coherence

0 0.002
1 0.015
2 0.021
3 0.026
4 0.015
5 0.003
6 0.010
7 0.021
8 0.009
9 0.068

10 0.081

where ŵi j (k) is the estimated coherence between frames i and j at frequency k
[consult Fuller (1976, pp. 315, 319–320), and Priestley (1981, p. 706)].

The critical value for ŵi j (k) can be determined from (20) once we substitute in
the critical value of the F distribution, given that M = 10. Choosing the 5% and 1%
levels of significance for α, and associated critical values for the F distribution,13

produces the following critical values for ŵi j (k):

ŵi j (k) ≤ 0.128, for α = 0.05, (21a)

and

ŵi j (k) ≤ 0.190, for α = 0.01. (21b)

We reject the null hypothesis if ŵi j (k) > 0.128 or 0.190, at the 5% and 1% levels
of significance, respectively, and conclude that there is dependence between the
two frames at frequency k. In the ABSD case study being considered, it is evident
from the size of the estimated coherence between frames 1 and 151 listed in Table 2,
that we cannot reject the null hypothesis at any of the estimated frequencies.14

The classical variance values associated with the TS(k) statistic are documented
in Table 3.

The AH test statistic result is documented in Table 4. Recall that this test is
a joint test of the null hypothesis of homogeneity at all estimated frequencies.
The aggregate degrees of freedom (MF + 1) are 11. Inspection of Table 4 indi-
cates strong rejection of the null hypothesis of homogeneity at the 0.05% level of
significance as indicated by the P-value of 0.0000 listed in Table 4.

The size results associated with the AH statistic reported by Wild (2001) in-
dicate a propensity for slight overrejection for the parameter values adopted in
this section for N , M , and MF + 1; consult col. A, Experiment 1, Table 1, of
Wild (2001). However, the actual empirical size level computed for the 0.05%
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TABLE 3. Variance of TS(k) statistic

Classical
Frequency variance

0 0.2153
1 0.1062
2 0.1056
3 0.1051
4 0.1063
5 0.1075
6 0.1067
7 0.1056
8 0.1069
9 0.1006

10 0.1983

TABLE 4. Homogeneity test result: AH test
statistic

Original series, classical variance

Statistic Value

χ2(11) 43.487
P-value 0.0000

level of significance generates an associated critical P-value of (1.0000000 −
0.9997532) = 0.000468. The P-value listed in Table 4 is clearly smaller than this
critical value, thereby giving additional support for the conclusions made above
about the nature of the rejections secured by the AH test statistic. These results
also rigorously verify statistically the conjecture made by Foster and Wild (1999a)
concerning the existence of heterogeneity and evolutionary change associated with
the qualitative change in spectral decomposition between the two frames.

5. CONCLUSIONS

A Cusum-based joint homogeneity test, termed the aggregate homogeneity (AH)
test statistic, is based on assessment of uniformity in spectral decomposition of
residuals from estimated econometric relationships. The actual concept of het-
erogeneity developed in this paper encompasses shifts in both variance and au-
tocovariance structure. These forms of heterogeneity are viewed as operating,
fundamentally, by changing the magnitude and shape of power spectra.

Under the null hypothesis of homogeneity, the distribution theory developed
is applicable to the class of real stationary processes with absolutely summable
autocovariance and fourth-order cumulant structure. The test statistic seeks to
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determine whether the spectral decomposition associated with one frame of the
residuals is the same as the spectral decomposition of another frame, in a statis-
tical sense. This means that any variation in spectral decomposition between the
two frames should be able to be attributed to random chance. If the variation is
greater than what can be reasonably attributed to random chance, then evidence
of heterogeneity and nonstationarity in the second-order moment structure of the
process will be forthcoming, providing direct evidence of evolutionary change.

The AH test utilizes the asymptotic independence and normality of logarithmi-
cally transformed nonnormalized spectral density estimates to construct a Cusum
test statistic.

As an example, the AH test statistic was applied to the residuals from the
Australian Building Society Deposits (ABSD) regression equation documented
by Foster and Wild (1999a). The results from applying the test indicate that the
second-order (variance/autocovariance) structure of the residuals is heterogeneous,
confirming the existence of weak nonstationarity and evolutionary change, thereby
rigorously confirming statistically the qualitative results previously documented
by Foster and Wild (1999a).

NOTES

1. The extension to multivariate problems is straightforward but nontrivial in terms of the additional
notation and spectral analysis concepts that must be introduced.

2. In this context, the expression “nonlinearity in functional form” could refer to nonlinearity in
variables and/or parameters.

3. This assumption is taken to mean that the deterministic part of the process has a constant
parametric structure. This would rule out structural change associated with parameter variation. This
assumption is necessary if (1a) is to have meaningful equilibrium properties.

4. A process has a time-reversible probabilistic structure if the probabilistic structure of the time
series going forward in time is identical to that in reverse time.

5. These schemes admit transfer functions which are time invariant and linear in parameters.
6. Here, the term “descriptive” refers to the way rolling regression techniques have been activated

in econometric packages. Specifically, wide use of plots of estimated coefficients from rolling window
regressions are employed instead of formal hypothesis tests.

7. A frame of data is defined as a subgrouping of successive data points taken from the same data
series x(t), t = 1, . . . , T . The data series generally will be a set of residuals obtained from a regression
model. Typically, the frame length is much smaller than the sample size T .

8. However, parameter MF + 1, which denotes the number of individual frequencies to be estimated,
determines the number of grid points in the interval (0, π), which determines the magnitude of the
difference between neighboring frequencies. For example, if MF + 1 = 10 and 100, then the grid sizes
are 0.31416 and 0.031416, respectively. Therefore, the larger the variable MF + 1, the smaller is the
absolute value of the difference between neighboring frequencies. This indicates that neighboring
frequencies are more likely to be uncorrelated if the window truncation parameter M is large relative
to parameter MF + 1. This observation is supported by results from the size simulations outlined by
Wild (2001).

9. For this result to hold identically, the two frames must have identical probability distributions. If
the frames have identical spectra but not identical distributions, then equations (9) and (10) hold only
asymptotically.

10. Equation (8) could be amended for bias associated with other types of lag windows by including
the appropriate expression for asymptotic bias outlined in Table 6.1 of Priestley (1981, p. 463).
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11. Because the Parzen lag window is used in spectral estimation, K = 0.539285 [see Priestley
(1981, p. 463)].

12. The coherence expression [c2(i, j)k + q2(i, j)k]/f 2
k has been termed the squared coherence by

some authors: consult Priestley (1981, p. 661). In this paper, we associate the term coherence with the
above expression. Also consult Jenkins (1961, 1963).

13. See, for example, Johnston (1972, pp. 428–429).
14. This test only addresses the issue of dependence at the second-order level. It is possible, however,

that the frames might be dependent at higher-order levels. As such, this test is not a complete test of
independence unless the process generating the residuals is Gaussian. However, note also that the result
of the Bowman–Shenton normality test documented with the descriptive statistics indicates that the
residuals are Gaussian.
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APPENDIX: ESTIMATION OF POWER SPECTRA
AND COHERENCE

It is assumed that we want to estimate MF + 1 individual frequencies, comprising the
frequency set {0, 1, . . . , MF}. We employ the Parzen window in spectral estimation. The
power spectrum can be estimated using the following formula:

f̂ (k) = f̂

(
πl

MF

)
= 1

2π

{
Ĉ(0) + 2

M/2∑
s=1

[
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(
s

M

)2

+ 6

(
s

M

)3
]

∗ Ĉ(s)

∗ cos

(
πls
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)
+ 4

M∑
s=M/2+1

[(
1 − s

M

)3]
∗ Ĉ(s) ∗ cos

(
πls

MF

)}
, (A.1)

where l = 0, . . . , MF and s = 1, . . . , M , where M is the integer value adopted for the window
truncation parameter.

The term Ĉ(s) denotes the estimate of the autocovariance function at lag s. The autoco-
variance function is estimated from the following equation:
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Ĉ(s) = 1

N

N−s∑
t=1

(Xt − X)(Xt+s − X), s = 0, 1, . . . , M, (A.2)

where N is the frame length and the mean of Xt , denoted X̄ , is estimated from

X̄ = 1

N

N∑
t=1

Xt . (A.3)

The cospectral and quadrature spectral estimates are obtained from the following formulas
where, for notational purposes, we associate with frame i the series {Xt } and with frame j
the series {Yt }:

ĉ(i, j)k = ĉi j
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q̂(i, j)k = q̂i j

(
πl

MF

)
= 1

2π

{
M/2∑
s=1

[
1 − 6

(
s

M

)2

+ 6

(
s

M

)3
]
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Given (A.4) and (A.5), the coherence is estimated from the following equation:

R̂
2
(i, j)k = Ĉr
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) (A.6)

and from (A.4) and (A.5),

Ĉi j (s) = 1

N

N−s∑
t=1

(Xt − X)(Yt+s − Y ), s = 0, 1, . . . , M, (A.7)

where

X̄ = 1

N

N∑
t=1

Xt and Ȳ = 1

N

N∑
t=1

Yt . (A.8)
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