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ABSTRACT 

The objective of this work is to develop a novel 3-D biological particulate 

dynamics framework to simulate blood flow in the micro circulation. This entails the 

amalgamation of concepts from various fields namely blood flow dynamics, solid 

mechanics, fluid-structure interaction and computational data structures. It is envisioned 

that this project will serve as a harbinger for implementing a multi-scale simulation 

model with applications in a vast array of situations from blood flows in heart valves to 

studying cancer metastasis. The primary motivation for this work stems from the need for 

establishing a simple, effective and holistic framework for performing blood flow 

simulations, taking into account the extremely 3-D nature of flow, the particle 

interactions and fluid structure interaction between blood and its constituent elements. 

Many current models to simulate blood cells rely on finite element methods which render 

large scale simulations extremely computationally intensive. The development of a 

framework for simulating blood flow is tied together with achieving a framework for 

performing an investigation of cancer metastasis. Cancer initially develops at a primary 

site and spreads through the body to secondary sites using the circulatory systems of the 

body – the blood circulatory system and the lymphatic system. It is known that all the 

cancer cells that enter into the circulation do not survive the harsh environment, though 

the exact cause of this is still undetermined. Moreover, the mechanical properties of 

cancer cells are not well documented and appropriate computational models require that 

experiments be conducted to determine the same. Thus the end goal of this work is to 

establish a system to analyze and simulate 3-D blood particulate dynamics, including 

cancer cells, from a holistic standpoint in order to understand more about the 

phenomenon of blood flow as a whole, and cancer metastasis in particular.
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CHAPTER 1 

MOTIVATION 

1.1 Introduction 

The objective of this work is to develop a novel 3-D biological particulate 

dynamics framework to simulate blood flow in the micro circulation. This entails the 

amalgamation of concepts from various fields namely blood flow dynamics, solid 

mechanics, fluid-structure interaction and computational data structures. It is envisioned 

that this project will serve as a harbinger for implementing a multi-scale simulation 

model with applications in a vast array of situations from blood flows in heart valves to 

studying cancer metastasis. The primary motivation for this work stems from the need for 

establishing a simple, effective and holistic framework for performing blood flow 

simulations, taking into account the extremely 3-D nature of flow, the particle 

interactions and fluid structure interaction between blood and its constituent elements. 

Many current models to simulate blood cells rely on finite element methods which render 

large scale simulations extremely computationally intensive. The development of a 

framework for simulating blood flow is tied together with achieving a framework for 

performing an investigation of cancer metastasis. Cancer initially develops at a primary 

site and spreads through the body to secondary sites using the circulatory systems of the 

body – the blood circulatory system and the lymphatic system. It is known that all the 

cancer cells that enter into the circulation do not survive the harsh environment, though 

the exact cause of this is still undetermined. Moreover, the mechanical properties of 

cancer cells are not well documented and appropriate computational models require that 

experiments be conducted to determine the same. Thus the end goal of this work is to 

establish a system to analyze and simulate 3-D blood particulate dynamics, including 

cancer cells, from a holistic standpoint in order to understand more about the 

phenomenon of blood flow as a whole, and cancer metastasis in particular. 
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1.2 Blood and its constituents – a brief overview 

The purpose of blood is provide oxygen and nutrients to and remove waste 

products from all parts of the body; it achieves this immense task by circulating through 

the heart to arteries, arterioles, capillaries, venules, veins and finally back to the heart. 

From the heart the deoxygenated blood is sent to the lungs where it releases carbon 

dioxide and absorbs oxygen, following which it returns to the heart from where it is 

circulated to all parts of the body through the aforementioned loop. Blood is not a 

homogeneous fluid, but a suspension of primarily three types of particulates – red blood 

cells (RBC) or erythrocytes, white blood cells (WBC) or leukocytes and platelets or 

thrombocytes. They each have their own unique function, and together form a highly 

efficient ecosystem, performing multiple functions such as delivering nutrients, removing 

wastes and protecting the circulatory pathways along with combating infections. These 

particulates together are called formed elements, and they are suspended in a fluid called 

plasma. More than 95% of blood particulates are RBCs [1]. The formed elements 

together constitute about 45% of the blood, while plasma contributes towards 

approximately 55%. The leukocytes and platelets make up 4% of the cells in the 

circulatory system. Plasma is about 90% water and contains three major proteins – 

albumin, fibrinogen and globulin. Plasma can be assumed to be a Newtonian fluid with a 

viscosity of 1.2 cP at normal blood temperature [2], however blood itself cannot be 

thought of as Newtonian due to its extremely high density particulate nature. 

The typical shape of a RBC is biconcave while the WBC and platelets can be 

assumed to be spheroids, though the platelet is considerably smaller than either a RBC or 

a [1]. An image of a RBC, a platelet and a WBC is shown in Figure 1-1. The RBC, as 

described above is a biconcave disk with a diameter of around 8µ and a thickness of 

around 2µ. The WBC can vary from having a spheroid shape of around 8 µ in diameter to 

16 µ in diameter. The platelet is typically around 2 µ in diameter, and is considered to be 

a spheroid for all practical purposes in this work. The amount of blood cells in a given 
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volume is given by its hematocrit, and as mentioned earlier, RBCs make up about 45% 

by volume of a given sample of fluid. Knowing that the typical human has about 5.5 

Litres of blood in the body, this amounts to about 3.5 Litres comprised of RBCs alone. 

Thus there are roughly about 2.5 x 10
13

 RBCs in the human body at any given point of 

time. This corresponds to over a million blood cells in one drop of human blood [1]. 

These RBCs traverse through circulatory pathways ranging from O(cm) – arteries to 

O(µm) – capillaries; i.e. they traverse though pathways that are three orders of magnitude 

apart, all in a span of a couple of minutes. Due to this extreme nature of travel of the 

RBC in the circulatory system, investigating the nature of blood flow is both extremely 

important and extremely challenging. A brief review of blood flow research will be given 

in the next chapter.  

1.3 The mechanisms of cancer metastasis – an overview  

Cancer is extremely dangerous primarily due to its ability to spread (metastasize) 

to secondary locations through the process of metastasis. A common school of thought 

about the initialization of metastasis is the seed and soil theory proposed by Paget[3], 

where it was proposed that cancer cells – the seed- will metastasize under specific 

conditions depending on the surrounding organs – the soil. Despite being proposed in 

1889, Paget’s theory is still considered to be a viable explanation, though additional 

explanations have been proposed which relate metastasis with mechanical loading 

conditions of the tissue surrounding the site of primary cancer. Once a cancer is initiated 

at a primary site, various mechanisms are set into motion which lead to its growth, 

proliferation and ultimately its spread to secondary locations. The major steps in cancer 

metastasis (shown in Figure 1-2) are as follows: 

1. Primary Tumor: This is the stage where the tumor initiates and starts growing at a 

primary site. 
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2. Proliferation and Angiogenesis: The tumor begins to spread and this requires a  

supply of more nutrients, which are obtained by the formation of new blood 

vessels (vascularization). 

3. Detatchment: The now proliferated tumor spreads and moves towards a point of 

entry into the circulation – both lymphatic and blood circulation are pathways. 

Lymphatic channels and thin walled venules provide the least resistance to the 

invading tumors. 

4. Circulation and transport: After gaining access to the circulatory system, the 

tumors now circulate, interacting with the elements in the blood circulation – 

namely platelets, red blood cells, lymphocytes, etc. These circulating tumor cells 

are transported through the body via the circulatory system. 

5. Extravasation: Tumor cells adhere to vessel walls and undergo extravasation – 

they move from the circulatory system into the tissue surrounding the circulatory 

vessels. 

6. Proliferation into secondary sites: The tumor cells now establish a conducive 

environment and lead to further angiogenesis, thereby completing the metastasis 

process. 

The focus of the current work for investigating cancer metastasis is Step 4 where the 

cancer cells traverse the circulation to spread to secondary areas.  

1.4 Objectives 

This work consists of both experimental and computational aspects. The 

computational aspect involves development of a framework for novel 3-D modeling of 

blood particulates. The experiments seek to investigate and characterize the response of 

epithelial prostate cancer cells to mechanical stimuli, while simultaneously seeking to 

provide material property values to be used in the aforementioned simulations.  
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This research will address the following objectives: 

OBJ-I. To develop and validate a modeling approach that efficiently captures the 

complexities of individual blood cell dynamics 

OBJ-II. To characterize the material properties of epithelial cancer cells in order to 

model ensembles of cancer cells along with blood cells 

OBJ-III. To implement a cost-effective framework that captures the interactions of 

multiple cells 

OBJ-IV. To determine how cancer cell properties impact their behavior in the 

circulation 
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Figure 1-1: Scanning Electron Microscope image of a Red Blood Cell, Platelet and White 
Blood Cell showing the different morphologies for each. The Red Blood Cell 
is biconcave in shape while the White Blood Cell ranges from being spherical 
to highly irregular. The platelet changes its shape based on its level of 
activation. (Electron Microscopy Facility at the National Cancer Institute at 
Frederick) 
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Figure 1-2: Steps involved in cancer metastasis[4]. One of the objectives of this research 
is to investigate cancer metastasis (d) when the cancer cells enter the 
circulation and interact with other cells in the blood to gain more knowledge 
about the physics of cancer. 
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CHAPTER 2 

NOVEL MODELING OF INDIVIDUAL BLOOD CELLS 

2.1 Introduction 

Human blood is a suspension of particulates – mainly red blood cells, white blood 

cells and platelets. The behavior of blood at the visible scale (hereafter called the macro-

scale) is a manifestation of the intricate interaction of blood particulates at the particulate 

scale (hereafter called micro-scale). Thus in order to more realistically simulate the 

behavior of blood, the particulate nature of blood has to be acknowledged. However, 

achieving physiologically realistic simulations is non-trivial, as a single drop of blood 

contains in excess of 1 million particulates [1]. Over the past few decades, researchers 

have employed various methodologies to simulate blood, with the methods spanning the 

spectrum from macro to micro-scale. A brief overview of past work in the field of micro-

scale blood simulation is provided in the next section. The motivation for novel 

particulate models is then explained followed by a detailed description of the current 

modeling technique. The models are tested in benchmark cases and the chapter is 

concluded with a brief discussion on the utility of the proposed methodology for blood 

simulation.  

2.2 Modeling and Simulating Blood : A Brief Review 

2.2.1 Continuum Models (macro-scale) 

Arteries in the human body range from O(cm) to O(µm). This three-fold change in 

the magnitude of arteries through which blood flows entail different modeling 

philosophies. The simplest method of simulating blood flow is by assuming that it is a 

homogeneous fluid with constant properties (viz. density and viscosity). There have been 

multiple studies in the past that make the case for assuming blood to be Newtonian under 
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certain flow conditions [2,5,6]. However, as this research focuses on the micro-scale 

models of blood flow, the macro-scale models are not presented here.  

2.2.2 Meso-Scale Models 

The meso-scale models for blood cells focus on individual blood cells per se, but 

typically does not involve complete resolution of the RBC deformation. These models 

only strive to capture the general type of deformations the RBCs undergo, while 

attempting to achieve interaction between the cell and its surrounding fluid. Hence these 

models can be said to be precursors for completely resolved fluid structure interaction 

models of blood cells. These models are applicable in medium sized arteries (100µm - 

500µm or so). Typical behavioral characteristics of the RBCs include flipping or 

tumbling and tank treading [7][8] .Moreover, blood at this size scale can no longer be 

approximated by a homogeneous fluid and the particulate nature of blood comes into 

play. One of the most significant phenomenon observed is the Fahraeus-Lindqvist effect 

[9]which is the migration of the RBCs away from the vessel walls and towards the central 

region while there exists a cell-free zone close to the arterial walls, thereby changing the 

apparent viscosity of blood in the tube.  

   Initial meso-scale simulations involving blood cells treated blood as rigid 

particles, as is the case of the study done by Sun and Munn in 2005 [10] They 

implemented a Lattice-Boltzmann model for RBCs which were approximated as rigid 

disks. The Fahraeus-Lindqvist effect was observed, and influence of the presence of a 

single white blood cell (WBC) on the 2-dimensional RBC dynamics was examined. The 

presence of a WBC significantly altered the flow dynamics due mainly to its large size 

compared to the RBCs. This alteration was more pronounced in approximations of 

smaller conduits than larger ones. It was also acknowledged that deformable WBCs 

should reduce the effect of the presence of a WBC in physiological conditions.  Meso-

scale simulations involving deformable RBCs in a 2-dimensional setting was performed 
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by Bagchi in 2007 [11]. In this study, the immersed boundary framework [12] was 

utilized without the use of a separate particle-interaction model for simulating up to 2500 

cells. RBCs were modeled as deformable 2-dimensional elastic membrane encapsulated 

particles whose membrane mechanics was governed by the neo-Hookean law. The 

phenomenon of tumbling and tank treading were observed for simulations of individual 

cells. Simulations of multiple cells (upto 2500 cells) were performed under a parabolic 

flow profile and the formation of a cell-free layer was observed. Other studies have 

looked at the behavior of blood cells in both 2D and 3D [13] and have been able to 

capture the general flow dynamics for blood cells in arteries; however in order to study 

phenomena like thrombosis and cancer metastasis, resolving blood particulates in high 

fidelity becomes necessary so that the intricate and complex interactions and dynamics 

can be captured.  

2.2.3 Micro-scale Models 

The particulate behavior of blood is best understood by simulating the actual 

RBCs with high fidelity – i.e. with enough resolution so as to capture not only the RBC 

deformation but also the effect of the deformation on the surrounding fluid. This is 

important to achieve a better understanding of the fluid-structure interaction problem at 

hand. 

   An example of a 2-dimensional of micro-scale simulation is the study by 

AlMomani et al in 2008 [14] where the RBCs and platelets were modeled as elliptical 

pseudo-rigid particles and spherical rigid particles respectively in a 2-dimensional 

framework. Here, particle-particle interactions were factored in and a fluid-structure 

interaction problem was solved using the level set method initially introduced by Sethian 

[15] coupled with the immersed boundary method introduced by Peskin [12]. Tendencies 

of RBCs to migrate towards the central core and for platelets to migrate towards the wall 

were observed. This study was important in that although the particles were not fully 
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deformable and the study was 2-dimensional, both RBCs and platelets interacting with 

the fluid were simulated. 

   While 2-dimensional simulations are a good early step in investigating blood 

flow, it is only the 3-dimensional simulations that would ultimately lead to a better 

understanding of the particulate nature of blood. This is because blood is a suspension of 

different kinds of particles such as red blood cells, platelets, white blood cells, etc as 

mentioned earlier; the interaction of all these particles is extremely 3-dimensional in 

nature. As mentioned before, blood vessels vary from O(cm) to O(µm), hence the nature 

of deformation of the blood constituents become more extreme in the smaller arterioles 

and capillaries, which would need high-fidelity models.  However, simulating the 

deformation of even a single RBC in a 3-dimensional realm proved extremely 

challenging, as evidenced by the numerous studies attempted [16–22] and the numerous 

methods to do so developed over the past few decades [16,18,23–27].   

    The basic approach to 3-dimensional modeling of RBCs began with modeling 

RBCs as barely deformable spherical or elliptical membrane-encapsulated capsules 

[28][29]. The membrane was initially modeled as elastic in nature with viscous effects 

being included in later models. Deformation of the capsules were modeled using 

perturbation methods in linear Stokes flow (very low Reynolds number). Despite the 

simplicity of the model and the restriction in flow conditions, some phenomenon such as 

tank treading was observed. Around the same time, in 1977, Peskin [12] introduced the 

Immersed Boundary Method(IBM) which was an effective method to treat the fluid as an 

Eulerian entity and any immersed solid such as a heart valve or a RBC as a Lagrangian 

entity, with communication between the two occurring in the transfer of velocities from 

Eulerian to the Lagrangian mesh and forces being transferred in the reverse direction. 

Multiple attempts at using the IBM for performing 3-dimensional simulations were made. 

Eggleton in 1998 [30] performed simulations for a capsule model (as explained above) in 

simple shear flow using various constitutive laws for the behavior of the elastic 
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membrane. Bagchi followed his 2-dimensional study with a 3-dimensional study in 2009 

[31] which modeled RBCs as 3-dimensional, fully deformable particles governed by the 

Neo-Hookean membrane law. Additional studies were published which simulated high 

resolution deformations for single cells using the IBM framework by Pozrikidis in 2003 

[21]. All of the above studies used the finite element method (FEM) for modeling blood 

cells. Advancement in computational power has led to more 3-D simulations over the 

past decade [31,32]; however achieving physiologically realistic simulations of large 

systems of multiple deformable blood-borne cells, especially in the highly dynamic 

environment of the microcirculation is still a challenge [23].   Recent advances in 

modeling RBCs include the development of the Immersed Finite Element Method 

(IFEM) in around 2004 by Zhang et al [33]. It was a modified version of the IBM in that 

the solid (Lagrangian) mesh actually occupied volume in the fluid grid. In 2005, Zhang et 

al presented the application of the IFEM towards simulating a small number of RBCs in 

shear flows and in flow inside an arteriole. In 2010, Dodson and Dimitrakopoulos [34] 

published their work on simulating erythrocytes using a cytoskeleton based continuum 

model. They modified the well-known Skalak law [35] by including a localized adaptive 

pre-stress parameter which allowed local area dilatation but prohibited global area 

dilatation in the membrane behavior of the RBC. Kloppel and Wall in 2011 [36] 

proposed a hybrid model comprised of both the lipid bilayer and the spectrin cytoskeleton 

underneath. They modeled the effect of the aforementioned components by introducing a 

combination of two materials along the thickness – an upper element representing the 

lipid bilayer and the lower element representing the cytoskeleton. The behavior of the cell 

was a result of the combined response of both the materials models. The studies 

mentioned in this paragraph highlight the advances being made in the field of single and 

multiple RBC simulations in a 3-dimensional framework. 
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2.3 Proposed Modeling Approach  

Over the years, barring a few exceptions [21,37], the vast majority of blood 

particulate models at the micro-scale were FEM based, which required the use of 

O(1000) – or more often O(10,000) elements [30–32,38] for a single cell. This makes the 

calculations highly computationally intensive, especially when attempting to simulate 

multiple cells. Furthermore, most FEM approaches use lower-order elements, which 

negatively affect accuracy [39].  In the current approach, a novel method is proposed for 

the modeling and analysis of  RBC dynamics at the micro-scale using the power of 

isogeometric modeling and analysis, specifically using Non-Uniform Rational B-Splines 

(NURBS). The underlying principle is based on the well-known B-splines, but allows far 

greater ability to model and deform an entity [40,41]. Moreover, we invoke the concept 

of isogeometric analysis which has proven to be a powerful tool in the realm of biological 

applications  [42–44]. This combination provides us with a novel method to both model 

and analyze the deformation of RBCs in the human circulation. Through NURBS-based 

modeling we can represent a geometrically accurate model and perform stress analysis 

using the same geometric framework. Additionally, due to the inherent geometric  

smoothness of the NURBS representation, models can be simulated using relatively few  

elements  as compared with traditional FEM-based methods. For instance, a circle (in 

2D) can be represented using as few as four surface points using a quadratic NURBS 

curve [40]. Moreover, NURBS possesses an inherent advantage for contact and particle 

interactions, which lends itself as an ideal candidate  for simulating blood flow dynamics 

of individual cells [45–48]. While NURBS has been used extensively in the CAD 

community, it is only in the past decade that it has found applications in the biomedical 

field [42,43,49]. While attempts have been made to apply the principle of isogeometric 

modeling to describe spherical cells [37], to the best knowledge of the authors, this is the 

first attempt to apply NURBS modeling to biological cells, especially biconcave cells in 

3-D.  This framework is generic in nature, and can be applied to modeling blood-borne 
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particulates of various shapes, for future applications of simulating flows with multiple 

types of particulates.  

2.4 NURBS Background and Overview of Geometric 

Modeling using Isogeometric Principles 

2.4.1 Knot Vectors 

NURBS are composed primarily of B-Splines, which in turn are built up from 

knot vectors. A knot vector is a means of denoting specific points along the parameteric 

direction. Any curve can be described by points on the curve either in Cartesian space or 

in parameteric space (along the curve). It is essentially a set of co-ordinates in the 

parameteric space, composed of individual values called “knots”.   {             } is 

the knot vector which is a nondecreasing sequence of real numbers             

       . The    are called knots. These form the building blocks of B-splines and 

consequently, NURBS. The basic idea behind knots in parameteric space is shown in 

Figure 2-1, where s is a co-ordinate measured along the curve and takes on the values 

from 0.0 at the beginning of the curve till 1.0 at the end of the curve. The curve can also 

be represented along the traditional Cartesian x-direction where, for instance, it spans 10 

units. One of the most commonly used parameterisations is that of a circle, where any 

point on a circle is represented by a traditional (x,y) pair and also with a polar (r,θ) pair.  

2.4.2 B-Spline Basis Functions 

The knot values in the knot vector described earlier form the building blocks for 

basis functions. Basis functions, or blending functions as they are more commonly known 

are used to smoothly blend functions across a set of points. These blending functions can 

be of different degrees, based on requirement. The first order (or 0-degree) blending 

functions are simply step functions which either take on the values 0 if consecutive knot 

values are the same, or 1 if consecutive knot values are different. Blending functions of 
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higher orders are constructed from the 0-degree blending functions. Any blending 

function at a particular point i of degree p is denoted by     . As these functions are 

always associated at a knot point with a specific value of the knot, u, B-Spline Basis 

functions denoted as         which describes an i-th  basis function N of degree p at the 

point u.         is defined as: 

          {
                 

                         
 (2.1) 

          
     

         
           

          

             
            (2.2) 

Here,         is a step function which is unity only on the half open interval 

       ,       . For degree p > 0, the basis functions are simply linear combinations of 

two (p-1)-degree basis functions.  This is  depicted in Figure 2-2 [39]. 

The basis functions are piecewise-polynomials, and there is a triangular 

dependence of basis functions as evident from the definition in (2.1), as is shown in 

Figure 2-2 [40]. The manner in which the knot vector U is defined has a profound impact 

on the values of the basis functions [40]. Note that the knot vector can have multiple 

knots of the same value, but U has to be a non-decreasing set of real numbers. The knot 

vector may be comprised of knots which are uniformly spaced or randomly spaced. The 

former is known as a “uniform” knot vector and the latter is called a “non-uniform” knot 

vector, or alternately periodic and non-periodic knot vectors. The derivatives of the B-

Spline Basis functions can also be determined, and they are also linear combinations of 

the basis functions [40]. 

2.4.3 B-spline Curves and Surfaces 

In order to describe a B-spline curve, it is necessary to have points in Cartesian 

space that denotes the nature of the curve. These points effectively “control” how a curve 

is described, and hence are called control points. With the aid of knots, basis functions 
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and control points, a B-spline curve can now be defined. A p-th degree B-spline curve is 

defined by 

      ∑           
 
                (2.3) 

   {                         }  (2.4) 

where {  } are the control points and the {         } are the p-th degree B-spline basis 

functions defined in (2.2). Reiterating, {  } are called control points, as they control the 

shape of the curve. They may or may not lie directly on the curve – they simply provide a 

path for the curve to meander. The polygon formed by the set of control points is called 

the control polygon. A simple B-spline curve is shown in Figure 2-3. 

The number of knots, the number of control points and the degree of the curve are 

enough to specify any B-spline curve and they are related by  

         (2.5) 

where     is the number of knots,     is the number of control points and   is the 

degree of the B-spline entity.  

The B-spline curves trace the general shape of the control polygon, with the 

distinct feature of local control: moving a specific control points will only affect the 

curve in the region     ,         , as        when u does not belong to     ,          . 

Furthermore, the same control polygon can yield very different curves, as shown in 

Figure 2-4. In the figure, the curve starts at control point    and ends at   . The knots 

are in the parametric direction u along the curve; and as depicted, the control points do 

not lie on the actual curve, but rather forms the boundary (polygon) along which the 

curve exists.  The logical extension of the B-spline curves are B-spline surfaces, which is 

essentially a tensor product of two one-dimensional B-spline basis functions in two 

parametric directions. It is worthwhile to note that the B-spline curves, and surfaces, are 

invariant under affine transformations. 
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2.4.4 NURBS Curves, Surfaces and Solids 

The development of NURBS was motivated by the requirement to have higher 

levels of local control over the shape of the curve or surface as compared to simple B-

spline curves and surfaces. The addition of weight factors in the basis function definition 

provided this added level of control, leading to the development of the Non-Uniform 

Rational B-spline (NURBS) family of curves and surfaces.  

A p-th degree NURBS curve is defined by  

      
∑              

 
   

∑           
 
   

             (2.6) 

   {                         } (2.7) 

Where the {  } are the control points as defined above, and the   are the weights 

         – every control point has a weight associated with it. The knot vector 

definition remains the same. A concise way of defining the NURBS basis functions (also 

called rational basis functions because of the weights) is 

         
          

∑           
 
   

     (2.8) 

       ∑            
 
     (2.9) 

The definition shown in (2.9) is analogous to the definition of B-spline curves in 

(2.3), in that the         replaces the B-spline basis functions. Though all the curves 

shown are the same cubic curve, modifying the weights associated with control point    

results in dramatically different curves. Setting the weight of    to be 0 essentially 

negates the presence of that point in the formulation. 

It is worthwhile to note that the same basic properties of the B-spline basis 

functions hold true for the NURBS basis functions as well; because the NURBS basis 

functions are just modified versions of the former. Another important property to be kept 

in mind is the partition of unity property : 

 ∑           
                       (2.10) 
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Setting the weights      will result in the NURBS curves (2.8),(2.9) 

transforming into the B-spline curves in (2.3).The weights provide additional control over 

the shape of the curves, as mentioned earlier. Increasing the weights results in the curve 

approaching the control point associated with the weight. This will be made clearer in the 

following sections. Similar to the extension of B-spline curves to B-spline surfaces, the 

definition of NURBS curves is extended defining NURBS surfaces. 

A NURBS surface of degree p in the u-direction and degree q in the v-direction is 

a piecewise rational function of the form 

        
∑ ∑                         

 
   

 
   

∑ ∑                     
 
   

 
   

                     (2.11) 

The {    } form a bi-directional control net (in 3-D space), and {    } are the weights 

associated with the control points. This definition can be simplified by introducing the 

piecewise rational basis functions as before: 

           
                   

∑ ∑                     
 
   

 
   

     (2.12) 

         ∑ ∑                
 
   

 
     (2.13) 

A simple NURBS surface is shown in Figure 2-5. 

The NURBS surfaces can be further extended into NURBS solids, which are 

basically tensor products of three one-dimensional basis functions. A NURBS surface of 

degree p in the u-direction, degree q in the v-direction and degree r in the w-direction is a 

piecewise rational function of the form 

          
∑ ∑ ∑                 

                        
 
   

 
   

∑ ∑ ∑                 
                   

   
 
   

     (2.14) 

                           (2.15) 

Here, {      } forms a tri-directional control net (in 3-D space) and {      } are the 

weights associated with the respective control points. The three dimensional parametric 

NURBS solid definition can also be cast in the concise form, similar to (2.13).  
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2.4.5 Creating NURBS Models of Red Blood Cells (RBC) 

2.4.5.1 One-Dimensional RBC Model 

A RBC is characterized by its biconcave discoid shape when at rest, as this shape 

provides for roughly 37% more surface area as compared to a sphere enclosing the same 

interior volume. This helps the RBC perform its oxygen and nutrient transport-exchange 

function very effectively, while also being able to undergo very large deformations in 

order to travel through the microcirculation while performing its functions. The NURBS 

curve model for the RBC cross section is shown in Figure 2-6. In Figure 2-6, the NURBS 

curve is shown in black. The blue dashed line is a representation of the bioncave shape 

using the equations defined in the paper by Pozrikidis on modeling RBCs [21]. The red 

points denote the locations of the control points, while the red polygon is the control 

polygon. As noted earlier, the control points need not lie on the actual curve, it only 

prescribes the direction and extent of the NURBS curve.  There are 40 control points in 

all for the complete NURBS biconcave shape, and the curve is a cubic curve (i.e. degree 

= 3). The weights were all set equal to 1 for simplicity, and can be changed at any time in 

the model to effect a change in any given portion of the cell. The NURBS models (curve, 

surface and solids) were created in a NURBS geometric modeling software 

RHINOCEROS 4.0® (McNeel &Associates, Seattle,WA), hereafter abbreviates as 

RHINO, stored as an IGS file and were then read by an in-house developed FORTRAN 

program which extracted the NURBS data (control points, knot points, weights) and re-

created the NURBS geometries for further modifications and interfacing with the fluid. 

2.4.5.2 Two-Dimensional NURBS Model 

The next step is to extend the 1-D NURBS model to a 2-D NURBS model. Note 

that the 1-D NURBS model is in the 2-D space in the traditional Cartesian sense. 

Similarly, the 2-D NURBS model is 3-D in the Cartesian space. The RBC model will 

have nodes and surface points in 3-D space with each point having a (x,y,z) co-ordinate 
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representation in the Cartesian space, while also simultaneously possessing a (u,v) co-

ordinate representation in the NURBS space. The rendered 2-D NURBS RBC model is 

shown in Figure 2-7. This is a NURBS surface following the definition in equation 

(2.13), with two independent knot vectors U and V. Both the U and V directions are bi-

cubic, and they have 25 and 17 knots respectively. The model is created by initially 

modeling one half of the NURBS curve shown in Figure 2-6 and rotating it 360 degrees 

to form a surface of rotation. The knot mesh which is formed by the intersection of the 2 

knot lines is shown by black lines across the RBC surface. The wireframe image of only 

the knot mesh and the control points is shown in Figure 2-7(b), and the side view is 

shown in Figure 2-7(c). There are 273 control points for the RBC. The knot mesh gives 

rise to knot elements, of which there are 180. The intersection of the knot meshes in the U 

and the V directions are called nodes, and there are 209 total nodes including overlapping 

nodes. The number of independent nodes in the RBC model shown in figure 3 is 172. 

As can be seen, there is a stark difference in the number of elements and nodes 

required to obtain a physiologically accurate representation of a RBC as compared to 

traditional finite element methods (FEM). This difference is highlighted in Figure 2-9, 

where the coarsest model created in this research, with 84 elements is compared with the 

finest model created with 6400 elements. Figure 2-8(a) shows the finest model with 6400 

elements with the knots shown on the left and a smooth render on the right. Figure 2-8(b) 

shows the coarsest model with 84 elements with knots shown on the left and a smooth 

render on the right. This highlights one of the unique and novel features of this research – 

the same smoothness and accuracy can be obtained with as few as 84 elements or as fine 

as 6400 elements. Refining or coarsening the model does not impact the geometry of the 

model, unlike traditional methods (such as FEM) used to model RBCs like finite element 

method (FEM), where coarsening the model leads to a substantial loss in geometrical 

resolution. This is shown in Figure 2-9 where the coarsest model (84 elements) is shown 
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alongside finite element models obtained from [50] [51]. It can be clearly seen that in 

order to obtain a smooth representation, Mills et al.[51] used 23,867 elements.  

2.4.5.3 Three-Dimensional RBC Model 

The extension of the 2-D NURBS RBC model into the 3-D NURBS RBC model 

is straightforward in theory. However, creating a 3-D NURBS model requires some 

modifications and includes more than simple extrusion of a surface into a solid. 3-D 

NURBS solids require 3 knot vector directions – U,V along the surface and the W-

direction perpendicular to the surface into the solid (along the thickness). Since the 

physiological structure of the RBC consists of a lipid bilayer membrane of finite 

thickness, it is necessary to re-create the membrane structure in RHINO for the 3-D 

NURBS model. For the creation of the NURBS solid, a two-step process was 

implemented. The first step comprised of creating a fixed number of layers, or 2-D 

NURBS surfaces depending on the degree of the W-direction NURBS connectivity 

desired. It was decided to incorporate a quadratic connectivity for the thickness direction, 

as this would provide the flexibility required for the deforming of the membrane. 

Keeping in mind the relation between the knots and degree of the connectivity desired, 

this elicited creating three 2-D NURBS surfaces from relation (2.13). This was done such 

that the nodes of all surfaces were in the direction of the surface normal at the node 

locations  - the surface definition adhered to the preservation of the local normal at every 

node point. The thickness of the surfaces along the transverse direction to the membrane 

was decided based on the ratio of the physiological thickness of the lipid bilayer to the 

diameter. This ensured a physiologically accurate representation of the RBC. The 3-D 

NURBS RBC model is shown in Figure 2-10. 

Figure 2-7 shows the side-view of the three surfaces comprising the RBC model. 

Figure 2-7(b) and Figure 2-7(c) show the enlarged view of the selected regions of the 

three layers in the transverse directions. This was then stored as in IGS file and was 
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supplied to the FORTRAN code. The second step of creating the 3-D NURBS solid 

occurs here in the FORTRAN code. The three surfaces are identified as inputs to a 

subroutine which has the quadratic knots stored for the W-direction. The solid is made 

one element thick – i.e. the element spans the thickness of the membrane. The three 

layers are required as input due to the quadratic element requirement as mentioned 

before. The number of layers would be different for elements of higher orders. Using the 

three surfaces as an input, along with the knot vector and the weights provided, the 3-D 

NURBS solid mesh is created. The number of elements stay the same as in the 2-D 

surface mesh – there are 180 elements that comprise the RBC. However, in the case of 

the 3-D NURBS solid, the elements are 3-D elements which have a cubic x cubic x 

quadratic nature. The number of control points triple to 819 control points (273 control 

points per layer). The U- and the V-direction knot vectors and weights remain the same 

as the 2-D case. The number of nodes also remain the same – 209 total nodes, 173 

distinct nodes. Thus the 3-D RBC is comprised of 180 3-D elements and 172 nodes, 

shown in Figure 2-10. A flowchart depicting the general modeling process is shown in 

Figure 2-11. 

2.5 NURBS-based Membrane Mechanics Modeling 

In order to obtain the stress developed in the cell membrane, it is necessary to 

deform it based on appropriate boundary / interface conditions. The process of obtaining 

information from the surrounding fluid, calculating membrane forces and interfacing with 

the fluid to communicate the forces is part of a methodology termed as (N)URBS 

(M)echanics or NM Modeling Methodology. Thus computing a single time step broadly 

entails the following sub-steps: 

For Time Step tn: 

NM-I. Determine Boundary Conditions to be applied 

to the NURBS entity 
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NM-II. Apply the Boundary Conditions obtained in 

NM-I to the NURBS entity 

NM-III. Characterize deformation of NURBS entity 

NM-IV. Determine entity-specific Membrane restoring 

forces 

NM-V. Communicate the presence of membrane forces 

to surrounding fluid 

Repeat for Time Step tn+1. 

NM-I which deals with determination of boundary conditions to be applied to the 

NURBS entity depends on the technique chosen for fluid-structure interaction. 

Consequently, the choice of interaction technique also dictates the manner in which 

information about the force generated in the NURBS membrane will be communicated to 

the fluid (i.e. Step NM-V). Steps NM-I and NM-V will be described in a following 

chapter and for the purposes of this chapter, it is assumed that the boundary conditions 

are known apriori. This section of Chapter 2 focuses on Steps NM-II to NM-IV. 

 

2.5.1 NM-II: Applying Boundary Conditions to NURBS 

entity  

In order to perform the membrane mechanics of the cell, it is necessary to first 

deform the cell by application of appropriate boundary conditions. Any boundary 

condition such as velocity, acceleration, force, etc. cannot be directly applied to the 

surface of the cell due to the NURBS formulation. The surface points are points which 

are bought to existence by a combination of control points and blending functions. Hence 

any manipulation to the surface has to be performed through the control points. This 

section describes a methodology to apply a specific boundary condition, i.e. velocity to 

the surface of the cell through the control points. 
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     Applying a velocity is essentially the same as applying a displacement (since 

the time step size is known) and hence this is akin to applying an essential or Dirichlet 

boundary condition. In the NURBS Book[40], Piegl and Tiller provide a means of 

moving a control point based on a known displacement at a surface point. This method is 

only applicable to one or at most two to three points, as the method only takes into 

account a displacement specified at one or two neighboring surface points and only 

moved the control point with the most influence over that surface point(s). In the case of 

the cell, the entire cell has to be moved, and hence another technique has to be applied 

which achieves satisfactory motion for all the points. Multiple different approaches exist 

ranging from simple least squares [52,53], modified least squares [54] to constrained 

optimization and energy minimization [55].  The approach adopted here is the basic least 

squares approach, chosen for its relative simplicity and versatility.  Moreover, many of 

the other methods build upon the least squares framework, and thus the implementation 

in this research can be adopted to reflect modifications in the least squares approach. 

   This section deals with the details of the least squares method for obtaining an 

equivalent displacement at the control points such that the surface points are displaced 

satisfying the applied boundary condition. This is necessary as the control points may or 

may not lie on the surface, a fact that is highlighted in Figure 2-7. In the figure, the 

control points are not on the surface of the RBC. On NURBS solids and surfaces, the 

positions of the surface points are “controlled” by the control points. To effect a motion 

of the NURBS object (irrespective of a curve, surface or solid), the control points have to 

be moved. But as the control points themselves are not situated on the actual surface and 

are elsewhere in the surrounding space, the velocities applied to the control points are 

different than the velocities of the fluid points in the proximity of the control points in 

space. The velocities applied to the control points are not necessarily the velocities of the 

surface points directly, as each control point has varying influence on a number of 

surface points. This essentially poses an interpolation problem where the least squares 
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method for interpolating values to the control points should satisfy the necessary 

boundary condition specification on the surface points.  

    In the least squares method, the underlying principles of any NURBS object is 

preserved, i.e. the contribution of the control points to the surface points in the form of 

the blending functions is factored into the formulation. The implementation of this 

formulation is described for a NURBS surface rather than a NURBS solid due to the 

manner of construction of the NURBS solid described earlier. The solid can be 

envisioned as multiple surfaces atop one another and connected across the thickness, 

maintaining surface normal vectors at every point. Hence in order to displace a NURBS 

solid created in this fashion, it is sufficient to determine the displacement of one of the 

surfaces, and simply displace the remaining surfaces by the same amount. This also 

functions to preserve the incompressibility of the membrane material. For the purposes of 

the current research, incompressibility of the membrane is a fundamental assumption that 

is followed. However, the creation of a 3-D NURBS solid lends itself to the future 

implementation of varying thickness across the membranes, if so desired, by simply 

displacing the multiple surfaces by varying amounts depending on the differential 

displacements to be applied. 

  Recall that any point on a NURBS surface was denoted by equation (2.13), and 

is reproduced here:  

         ∑ ∑                
 
   

 
     (2.16) 

where           are the shape functions (or basis functions) for a 2-D NURBS 

formulation, which in turn is derived from a tensor product of two 1-D NURBS basis 

functions. It is clear that for every control point      there exists a set of shape functions 

    .  Equation (2.16) is the equation for a particular point on the surface. Here, the 

number of effective control points having influence over any surface point is        

                              where p is the degree of the surface in that particular 



26 
 

direction. For a NURBS surface, there are a total of             influencing control 

points for every surface point, where p and q are the degrees in the u and the v parametric 

directions. 

    The displacement field around the surface points (also called knot points) is 

known from the fluid surrounding the surface points. This known displacement field is 

denoted in (2.17): 

            ̅̅̅̅   (2.17) 

where  ̅ is the location of the knot points (or surface points) in 3-D Cartesian space. The 

method of determining the actual displacement field        will be explained in more 

detail in Chapter 6 which deals with the FSI. For the purposes of this chapter, it is 

assumed to be known a priori. Once the specified displacements of the knot points are 

known, the required parameters to be calculated can now be stated, shown in (2.18): 

        ∑ ∑                 
 
   

 
     (2.18) 

 

where       is the actual displacement field which will be calculated based on the 

displacements prescribed at the control points      . This can be set up in terms of the 

least squares formulation, where the error in the actual (known) and calculated knot point 

displacement is to be minimized, i.e. 

              ∫              
     (2.19) 

The minimization function is calculated over the entire surface, element by element. This 

lends itself nicely to the actual NURBS formulation, as this can be performed easily over 

discrete elements and can be assembled together as a sum of element contributions.  

Following the approaches mentioned in [54], the formulation can be written as: 

 [∫          
       

]          [∫               
       

]  (2.20) 

 [∫          
       

]             (2.21) 
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 [∫               
       

]                  (2.22) 

The final form of (2.22) can be written in a canonical form as a standard matrix 

equation: 

                 (2.23) 

where [K] can be thought of as a “stiffness” matrix and [Q] can be thought of as a “force” 

matrix from a traditional FEM perspective. This is solved using a LU decomposition 

algorithm [56]. It is worthwhile mentioning here that although the displacement field is a 

vector (3-D), it can be treated as a system of discrete scalar component equations, as 

there is no coupling between the components. This is shown in (2.24), and this is done on 

a local level (element-by-element) after which the global matrices are assembled and 

solved. A schematic of the methodology for boundary condition interpolation is shown in 

Figure 2-12. 

    [

   
      

      
      

   

]  [
   

      

   

]  (2.24) 

2.5.2 NM-III: Characterization of the Deformation of the 

NURBS entity using Isogeometric Analysis 

Once the boundary conditions are specified, the position and configuration of the 

RBC is updated. This causes the RBC to deform according to the surrounding flow field, 

which leads to development of stresses within the membrane. This section describes the 

calculation of the membrane forces after updating the configuration of the RBC. Note 

that the method described to update the position of the RBC did so for the middle surface. 

The control points for the upper and lower surfaces are updated using the displacement 

values of corresponding control points for the middle surface, as the control point “net” is 

located along the local surface normal. In order to determine the stress distribution over 

the NURBS RBC surface, the displacements of the nodes are first calculated. This is 

followed by utilizing the shape functions (element interpolation functions) to determine 
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the displacements of the integration points (Gauss Quadrature points) over the surface. 

The displacements of the integration points will then be used to determine the strains and 

subsequently, the membrane forces. A 2x2 quadrature was used due to the bicubic 

description of the surface of the RBC.   

     Recall the 3-D NURBS solid definition from (2.14), which can be recast into 

the concise form. 

 

          
∑ ∑ ∑                 

                        
 
   

 
   

∑ ∑ ∑                 
                   

   
 
   

     (2.25) 

               
                             

∑ ∑ ∑                 
                   

   
 
   

     (2.26) 

           ∑ ∑ ∑                      
 
   

 
   

 
    (2.27) 

 

Thus the 3-D rational function               which is a representation of all the NURBS 

basis functions is comprised of 3 individual, 1-D NURBS basis functions. Dropping the 

scalars - the weights and the denominator for convenience, we have: 

               (2.28) 

where                                      

The derivatives of the rational function R with respect to the parametric directions 

u,v and w are given by (using the classical chain rule of differentiation): 

 
  

  
            (2.29) 

 
  

  
            (2.30) 

 
  

  
            (2.31) 

However, it is evident that R can also be represented in terms of the Cartesian co-

ordinates:-                                         . 

The conventional Jacobian representation follows: 
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⟧           (2.32) 

The derivatives with respect to the Cartesian co-ordinates can be obtained as J is 

invertible. 
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) (2.33) 

The above calculations are performed for the reference configuration of the RBC. 

Mathematically, the reference configuration can be described as: 

           ∑ ∑ ∑                      
 
   

 
   

 
    (2.34) 

Similarly, the current (deformed) configuration of the RBC can be obtained: 

           ∑ ∑ ∑                      
 
   

 
   

 
    (2.35) 

The deformation gradient can now be expressed mathematically as: 

   
  

  
  ∑ ∑ ∑             

 
   

 
   

 
    (2.36) 

where    is the referential gradient of the shape function, obtained in (*), and   denotes 

the standard tensor product. The deformation gradient is now used to obtain the right    

and left    deformation tensors 

           (2.37) 

           (2.38) 

Once the deformation gradient has been determined, the next step is to quantify 

the extent of deformation in terms of the restoring forces set up in the membrane.  
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2.5.3 NM-IV: Determine Entity-Specific Membrane 

Restoring Forces using Constitutive Relations 

Upon obtaining the deformation gradient and the stretch tensors, a constitutive 

model can now be implemented to determine the membrane restoring force based on the 

kind of NURBS entity – eg. RBC, leukocyte, etc. The modular implementation of the 

membrane mechanics analysis procedure enables the use of many different constitutive 

models to describe the behavior of the membrane depending on the entity in question. For 

the purposes of describing the method of determining membrane forces, the case of the 

RBC is examined.  Skalak et al in 1973 [35] proposed a membrane strain energy function 

for RBC membranes which incorporated a penalty term based on area dilatation of the 

membrane. The RBC is known to be highly deformable, while at the same time the 

membrane area does not dilate by more than ~4% [57]. In this study, for the ease of 

implementation and to aid comparison to literature, the neo-Hookean model is also 

employed due to its prolific use in the research community for simulations involving red 

blood cells [11,21,30,31]. The Skalak and neo-Hookean models are shown in (2.39) and 

(2.40).  
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  (2.39) 
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   ) (2.40) 

where    and    are the invariants, and W is the strain energy density function. The 

factors                 and                 are membrane material 

properties.    is a property which introduces a penalty for area dilatation, i.e. very large 

tensions are introduced when area dilatation increases beyond physiologically possible 

values. 

The membrane tension is obtained using the material’s strain energy density 

function and measures of the deformation of the surface. 



31 
 

      
 

    

  

   
         

  

   
  ̅    ̅  ̅  (2.41) 

where        are the principal stretches,     is the left Cauchy deformation tensor,  ̅ is 

the identity matrix and  ̅ is the outward unit normal from the surface at a particular 

integration point.     

It is important to note at this point that the in-plane membrane tension only gives 

the instantaneous tension at the gauss-integration points of the membrane. The forces that 

are to be transmitted to the fluid are obtained from calculating the gradient of the in-plane 

tension values over the surface. The method used to obtain the nodal forces follow that 

suggested in [58]. 

The forces which are to be transmitted to the fluid can be expressed 

mathematically as: 

        (2.42) 

In (2.42),   denotes surface divergence. As each element is evaluated for the 

aforementioned parameters and the in-plane tension tensor is obtained at each gauss 

integration point, the force that is developed in that element is distributed to all the 

control points that are influencing that element. The number of control points influencing 

a particular element is given by the type of element (i.e. the degree). Since the example 

shown above is a             (i.e. cubic by cubic by quadratic element), the number of 

influencing control points per element is                     . Hence every 

element has 48 shape functions contributing towards its definition and operation. Recall 

that the combined shape function at any location is a product of the individual shape 

functions in the three parametric directions, and that the derivatives of the shape 

functions with respect to the Cartesian co-ordinate system are given in (2.33).  

The nodal forces are obtained as follows [58]: 

    ∫             ∫                             
    (2.43) 

where the matrix      is the nodal strain-displacement matrix, as described in [58] 
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⟧ (2.44) 

The summation of the resultant force(i.e. vector sum) is taken over all the control 

points. It is this force that is felt by the fluid surrounding the NURBS entity, and the 

method to distribute the membrane forces to the surrounding fluid will be described in a 

later chapter.  

2.6 Validation of NURBS Isogeometric Modeling 

Technique 

NURBS models were created for spherical and biconcave cells. The spherical 

models consisted of 176-9000 NURBS elements while the biconcave models consisted of 

220-6400 NURBS elements, shown in Figure 2-19. Prior to interfacing with the fluid, 

basic tests were performed on the NURBS models to ensure and test that the coarse 

models were able to capture the deformations accurately. Towards this end, the NURBS 

models were subjected to known flow fields which were analytically prescribed. The 

prescribed flow fields were then used to interpolate the boundary conditions on the 

NURBS models, thereby deforming them and the deformation was quantified.  

2.6.1 The Patch Test 

Prior to testing the spherical and biconcave models, a patch test was conducted on 

a NURBS patch. A patch test verifies the integrity of the model to capture responses to 

deformation. It also tests mesh quality, information exchange across different elements 

and is a standard test used in the modeling community for testing meshes. Though a 

majority of the applications of this test in the community are on FEM based meshes, the 

standard patch test can be used to test the quality of an entity meshed using other methods 

as well.  
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A NURBS patch in the form of a square sheet with finite thickness was created 

for this purpose. Two different meshes were created – a coarse and a fine mesh. The side 

of the square sheet was 10 units and the thickness was 1 unit. The coarse mesh had 9 

NURBS elements and the fine mesh had 36 NURBS elements. Note however, that the 

dimensions of the sheet are immaterial to the purpose of the test. It is essential, however, 

that the patch created has at least one internal element, i.e., an element that is contained 

entirely in the interior of the patch and is not exposed to any of the boundaries. For 

details, please refer [58].  

There are multiple methods to administer a patch test. A common way in FEM is 

to prescribe an arbitrary linear displacement field and measure the calculated membrane 

stresses and/or displacements. A simpler way for non-FEM approaches is to specify a 

linear displacement field and check the forces obtained at the nodes. In a linear or bilinear 

displacement field, the internal elements should have zero force. The latter test was 

adopted, as it corresponded with the nature of calculations expected from the procedure ( 

i.e. displacements being specified and the resulting the membrane forces are computed).  

A (i) linear and (ii) a bilinear displacement field were prescribed to the control 

points of the NURBS Patch for both meshes. The membrane forces was obtained and 

plotted at the nodes. As the bilinear field specified was symmetric in both x and y-

directions, this resulted in a symmetric force distribution being computed over the patch. 

The lower left corner of the patch coincides with the origin (0,0), and this has the effect 

of anchoring the patch down at that point (no displacement). As a result, the specified 

bilinear field effectively tries to stretch the patch evenly in both directions. The interior of 

this patch should give rise to zero strains and should not have any force calculated. As 

expected, the internal nodes had zero force associated with the internal elements for both 

meshes, as is shown in Figure 2-13. This demonstrated that the NURBS methodology 

was implemented successfully.  



34 
 

2.6.2 Verification of Boundary Condition Application to 

the NURBS entity (NM-II) 

2.6.2.1 Poiseuille Flow 

After the patch test, the least squares method for applying boundary conditions 

was tested by imparting a Poiseuille flow profile to a biconcave RBC. The flow was 

prescribed analytically on four RBC meshes with elements ranging from N=84 to 

N=6400. Large deformation was prescribed over a single time step in order to investigate 

extreme deformations. The flow-field prescribed analytically is given below: 

                          (2.45) 

where    ,    and    are the components of the velocity vector in the three Cartesian 

directions,   is a constant and     are the locations of the surface points in space. The 

orientation of the model was such that the     directions were assumed to be in the radial 

directions and the   direction was along the length of the capillary. The deformation was 

executed in one time step. During the timestep, NM-II – NM-IV were all executed: NH-

II, the least squares calculation was used to determine control point displacements; NM-

III, the deformation gradient was determined and NM-IV, the membrane forces were 

calculated, as described above. This was done not only to determine the time taken for 

calculating the aforementioned quantities for different meshes, but also to compare the 

membrane forces meshes of varying densities. Two different values of   were used - a 

lower and a higher value to determine the effect of large deformations on the accuracy of 

the approach. Because the flow-field was analytically prescribed, the membrane 

deformation was compared with the correct, known locations of the surface points, and 

thuswas used for comparison. The RMS error was calculated between the exact and 

obtained locations of the surface points to determine the performance of the least squares 

approach across the various meshes.  
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The deformed shapes for the coarse and fine RBC models is shown in Figure 2-14 

for a high value of  . Even the coarse model captures the deformation very accurately, 

with the two deformed meshes almost overlapping. There is no loss of geometric integrity 

with the coarse mesh due to the high order (cubic) nature of the NURBS surface. Figure 

2-15 shows the comparison of the analytical and computed locations of several arbitrary 

points on the surface for both the coarse and fine meshes. In both cases, the exact and 

calculated locations overlap. Figure 2-16 shows the RMS error across the two meshes 

tested for a high value of  . The coarse mesh had the largest error of 0.7% and the error 

reduced to less than 0.1% for finer meshes. For the case with lower  , the largest error 

was ~ 0.3% for the coarsest mesh. This showed that not only does the coarsest mesh 

accurately capture the deformation, but that there is no loss of geometric integrity as the 

mesh is coarsened, depicting the utility of using a NURBS approach.  

2.6.2.2 Straining Flow   

The RBC was also subjected to a straining flow. The flow-field prescribed was:  

    
 

 
            

 

 
           

 

 
      (2.46) 

where the symbols have the same meaning as explained earlier. The flow-field was 

prescribed was incompressible, hence the values of the coefficients. Here too, a large 

value of    was prescribed to the same meshes used for the Poiseuille flow case. Figure 

2-18 shows the deformed shapes after one time step. As the flow-field was 3-D in nature 

instead of the simpler paraboloid profile of Poiseuille flow, the RMS error was ~1% for 

the coarsest mesh but reduced to < 0.2% for finer meshes. Moreover the deformation 

prescribed was an extreme case for a single time step and hence the performance of the 

least squares approach was deemed satisfactory. The strongest feature of this exercise 

was the geometric integrity that was maintained even for highly coarse meshes.  
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2.6.3 Verifying Isogeometric Analysis Approach (NM-III 

and NM-IV) 

After the application of boundary conditions was verified satisfactorily, the 

NURBS isogoemetric analysis method described in detail in section 2.5.2 and 2.5.3 was 

examined by prescribing analytical deformation fields to spherical and biconcave models 

. The spherical model was incorporated as it was envisioned to use spheres for platelets, 

white blood cells and cancer cells. As mentioned earlier, the spherical models were 

created with NURBS meshes ranging from 176 – 9000.  The most basic test carried out 

for a sphere was an uniform expansion test. The expanding flow-field was analytically 

prescribed such that the sphere expands uniformly in all directions. This simulated the 

application of a uniform isotropic tension over the entire sphere. The expansion test was 

carried out for the two coarsest meshes for a sphere, with 176 and 640 NURBS elements 

respectively. The forces obtained at the nodes on the surface of the sphere is shown in 

Figure 2-20. Since the finer of the two aforementioned meshes had roughly double the 

mesh density across both the latitude and longitude, the forces for the finer mesh were 

divided by a factor of 4 for comparison. While inexact, the purpose of this test was to 

investigate not only the values but more importantly the force distribution across the 

surface. As expected, there is a uniformly outward directed force across the entire sphere. 

The magnitudes of the forces are dependent on the size of the NURBS elements. As the 

NURBS elements are irregularly sized, the force values are not the same across the entire 

surface, with the values being highest near the equator on account of the largest elements 

and conversely being the lowest near the poles on account of the smallest elements 

present there. However the force distribution across both meshes were the same, which 

proved that the coarse meshes can efficiently replicate the applied deformation compared 

to finer meshes. The maxima and minima of the forces also match very well across both 

meshes.   
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A straining profile was also applied to the same spherical models. The straining 

profiles were similar to the flow-field prescribed to investigate the behavior of an RBC in 

the previous section. Figure 2-21 shows the force distribution for the two spherical 

models. The mesh is also shown for convenience and to highlight the coarseness of the 

model. The locations of the maxima and minima are very accurately replicated and the 

values of the maximum and minimum forces also match closely. Figure 2-21 shows the 

direction of the forces at the surface points. It can be clearly seen that the direction of 

forces are the same for both the coarser and finer meshes, with the finer mesh evidently 

containing a greater density of nodes and hence force vectors.  

Similarly, the straining flow-field was prescribed on RBC models to determine 

the force distribution in the membrane, and also verify that zero area dilatation which is a 

property of RBCs was being appropriately enforced. In order to test the models, a coarse 

and fine mesh were chosen such that they could be better compared with each other. 

Though the coarsest RBC model had 84 elements, the other models created contained a 

more even node distribution and two such meshes were chosen for comparison. The 

coarse mesh contained 440 NURBS elements and the fine mesh contained 1680 NURBS 

elements. The force distribution on the RBC models subjected to a straining flow-field is 

shown in Figure 2-22. As can be seen, the distributions are very similar, with the 

locations of maxima and minima replicated by the coarse mesh. Figure 2-22 shows the 

force vectors for both aforementioned meshes. The RBC models were also subjected to a 

Poiseuille flow-field similar to that prescribed in the earlier sections. The force 

distribution and force vector directions are shown in Figure 2-23. It is clearly seen that 

the coarse models replicate and agree with the force distributions computed for the finer 

mesh, thereby showing that the NURBS approach could be used as a viable alternative to 

traditional FEM-based approaches.  
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2.7 Summary and Discussion 

In this chapter a novel modeling approach was proposed using NURBS. The 

motivation behind the development of this methodology was to overcome the drawbacks 

of using traditional FEM-based approaches (high computational cost per cell, point-by-

point searching algorithms for contact modeling, potential communication costs during 

parallel processing) which stem from the large number of elements necessary to represent 

a cell such as a RBC. Various 3D NURBS models for both biconcave and spherical cells 

were presented, with detailed information on achieving deformation of the NURBS 

entities using the least squares approach, as well as performing NURBS based 

isogeometric analysis using constitutive models.  The main difference between traditional 

FEM-based approaches and the NURBS approach is the ability to represent the exact 

geometry using very few NURBS elements and to apply the isogeometric concept for 

analysis using the same NURBS basis functions used for creating the said geometry. This 

makes NURBS-based isogeometric analysis a holistic simulation approach, with the basis 

functions being used for representing the geometry, effecting deformation and 

performing stress analysis. It was clearly seen that extremely coarse meshes still captured 

the geometry of the entities of interest – namely the biconcave and spherical shapes of the 

cells, with the ability to use as coarse as 84 elements for representing the complex 

biconcave shape of the erythrocyte. As mentioned in [39], the NURBS based system is a 

very versatile and homogeneous system compared to high order FEM systems, an 

advantage which could be used effectively in performing analysis of the deformation 

based on constitutive models. While NURBS-based geometric modeling has found 

applications in the biomedical industry only over the past decade [42,43], the advantages 

of using NURBS-based isogeometric analysis had been recognized earlier to model the 

deformations of various structures and entities which were typically modeled using FEM  

[39,40] and hence there is a wealth of knowledge available in implementing and 

incorporating NURBS approaches in modeling biological cells. After accurately 
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describing NURBS models of a characteristic biconcave RBC, methods were 

implemented to impart deformation of a NURBS entity using a least squares approach. 

This was necessitated by the control points not necessarily lying on the NURBS surface. 

While the least squares scheme implemented here is a global scheme, local schemes may 

be employed in the future to reduce computational cost and time [59]. A comprehensive 

description of the isogeometric membrane mechanics analysis approach was also 

presented and described. The membrane mechanics approach is an implementation of the 

methodology presented in [58], and can be improved or changed in the future based on 

need. A modular approach has been implemented here which enables the use of multiple 

constitutive models for describing the membrane mechanics [22]. The neo-hookean and 

Skalak models have been implemented in this work. The least squares approach was 

tested and validated for canonical flow-fields which were prescribed analytically. The 

RMS error for a biconcave RBC was ~1% or less based on the extent of deformation 

prescribed for the coarsest mesh tested containing 84 elements. The membrane mechanics 

analysis was tested first by performing a basic patch test and subsequently by subjecting 

spherical and biconcave models to canonical flows. The coarse models for both spherical 

and biconcave models performed very well by efficiently capturing the force distributions 

and the range of forces for all cases studied. Thus the NURBS approach makes a strong 

case for potentially being used as a viable alternative for FEM-based methods. Moreover 

a very strong advantage of NURBS over other approaches lies in the ability to implement 

efficient contact algorithms to simulate multiple particle interactions [45,47], where the 

coarse nature of NURBS models would aid in  faster computations for simulating large 

number of biological cells.  
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Figure 2-1: Example curve showing two techniques to describe the geometry – (i) 
Parametric description where the parameter ‘s’ is described along the curve, 
s=0 at the start of the curve and s=1 at the end of the curve, and (ii) Regular 
Cartesian system where the curve spans a length of 10 units in the typical x-
direction. 
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Figure 2-2: Example of B-Spline basis function determination (a) Typical 
information flow to construct basis functions of 1

st
, 2

nd
 and 3

rd
 order using triangular 

information flow system [40] (b) Typical basis functions of 1
st
(square), 2

nd
 (triangular) 

and 3
rd

 (parabolic) order [39]. 
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Figure 2-3: Basic B-Spline Curve showing locations of control points (black squares), 
control polygon which specifies the boundary within which the curve lies 
(dotted lines), knot points specified along the length of the curve (blue 
markers) and the resulting NURBS curve (red). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: Representation of B-spline curves of increasing degrees for same control 
polygon. The same control points and control polygon can be used to create 
curves of increasing degree and reducing tortuosity.  The degree of the curve 
increases with increasing thickness(red lines). 
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Figure 2-5: Bidirectional control point net in 3-D space and corresponding 2-D NURBS 
surface. The NURBS surface is 2-D in the NURBS space but 3-D in the 
Cartesian space.  
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Figure 2-6: 1-D NURBS RBC model (a) 1-D RBC model based on an equation for 
biconcave shape in [21]. Red points are control points, the black solid line is 
the resulting 1-D NURBS curve  and the dotted blue curve is the shape 
prescribed in [21] .(b) 1-D NURBS biconcave RBC shape from (a) shown 
without control points for clarity. 
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Figure 2-7: 3D NURBS RBC model (a) Shaded view with knot mesh (black lines) shown 
(b) Wireframe view, depicting knot mesh(red) and control points(black 
spheres) (c) Transverse wireframe view (d) Parametric direction along 
thickness. The three parametric directions are also shown. 
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Figure 2-8: Fine and coarse RBC models (a) finest models with 6400 elements (left) and 
smooth render (right) (b) Coarsest model with 84 elements (left) and 
corresponding render (right). 
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Figure 2-9: Example of preservation of geometry using isogeometric modeling as 
compared with a loss of geometric information using traditional FEM 
modeling as the mesh coarsens (from finest –TOP to coarsest –BOTTOM) (a) 
Various RBC FEM models [60] (b) Various RBC NURBS models created in 
present research. Numbers to the left of the models denote number of 
elements. 
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Figure 2-10: 3-D view of bi-cubic NURBS RBC solid model with a portion cut away to 
show thickness layers for quadratic connectivity across the thickness (inset). 
The three parametric directions are shown by solid black arrows. 
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Figure 2-11: Procedure to create geometric models of blood particulates using NURBS. 
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Figure 2-12: General procedure to obtain boundary conditions by interpolating from 
surface of NURBS entity and applying to control points. 
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Figure 2-13: NURBS patch test for coarse and fine patches showing zero force for 
internal elements when subjected to a bilinear displacement field. 
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Figure 2-14: Comparison between deformed shapes for coarse (red) mesh with 84 
elements and fine (black) mesh with 6400 elements when subjected to 
analytically prescribed parabolic flow field. The cereal-bowl shape attained is 
clearly seen, with the deformed shape attained by the fine mesh.  
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Figure 2-15: Comparing between the exact and calculated locations of surface points to 
verify least squares interpolation procedure for boundary condition application 
(Top) Coarse Mesh with 84 elements (Bottom) Fine mesh with 6400 elements. 
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Figure 2-16: Plot of L
2
 relative error between the computed locations of the surface 

points of the RBC and the analytical values in a prescribed Poiseuille flow 
profile. 
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Figure 2-17: Comparison between coarse, medium and fine RBC meshes when subjected 
to an analytically prescribed straining field and using the least squares method 
for applying boundary condition (a) Schematic of flow field prescribed (b) 
Three views of deformed models for coarse mesh with 84 elements (yellow), 
medium mesh with 440 elements (green) and fine mesh with 1600 elements 
(red).  
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Figure 2-18: Smooth rendered shapes of RBC in straining and parabolic flow using the 
coarse mesh with 84 elements. 
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Figure 2-19: Various NURBS meshes created for RBC and sphere (a) 3-D view of the 
different NURBS meshes created for the RBC. The meshes contain 220, 440, 
1600 and 6400 elements respectively, from left to right. (b) 3-D view of the 
different NURBS meshes created for the spherical cell. The meshes contain 
176, 640, 2432 and 9472 elements respectively, from left to right. Note that 
there is no loss of geometrical resolution as the mesh is coarsened. 
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Figure 2-20: Comparison of force distribution over the surface of a spherical NURBS 
model subjected to uniform expansion (a) Coarse model with 176 elements(b) 
Fine mesh with 640 elements. 
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Figure 2-21: Comparison of force distribution and force vectors over the surface of a 
spherical NURBS model subjected to an analytically prescribed straining field 
(a) Schematic of flow field (b) Coarse mesh with 176 elements (c) Fine mesh 
with 640 elements. 
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Figure 2-22: Comparison of force distribution and force vectors over the surface of a 
biconcave RBC NURBS model subjected to an analytically prescribed 
straining field (a) Schematic of flow field (b) Coarse meshl with 440 elements 
(c) Fine mesh with 1600 elements. 
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Figure 2-23: Comparison of force distribution and force vectors over the surface of a 
biconcave RBC NURBS model subjected to an analytically prescribed 
parabolic flow field (a) Schematic of flow field (b) Coarse mesh with 440 
elements (c) Fine mesh with 1600 elements. 
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CHAPTER 3 

CHARACTERIZING PROPERTIES OF CIRCULATING CELLS 

3.1 Introduction 

Modeling and simulating the behavior of cells in the micro circulation entails 

knowledge of material properties prior to simulation. Typical circulating cells include the 

ubiquitous red blood cells, white blood cells or leukocytes and platelets. This chapter 

provides a brief description of the use of material properties for the aforementioned 

typical cells which also provides a motivation for determining properties of other 

application-based circulating cells. Since one of the aims of this research involves 

attempting to simulate cancer cells in the micro circulation for investigating cancer 

metastasis, there arises a need for determining material properties of cancer cells. A brief 

review on what is currently understood about cancer cell material properties is provided, 

followed by current efforts to determine material properties of suspended cancer cells.    

3.2 Characterizing material properties of typical cells in the 

circulation 

3.2.1 Red Blood Cells 

The red blood cell (RBC) is the most common of all cells in the circulation. RBCs 

have captured the interests of researchers for decades, and this section highlights some of 

the approaches for measuring their properties, beginning in the 1950s [61]. The 

characteristic biconcave shape of the RBC was researched extensively by Evans and 

Fung [62] who determined  an average RBC to possess a diameter of 7.82 µ, a volume of 

94 µ
3
 and a surface area of about 135 µ

2
. The biconcave shape of the RBC allows it to 

have roughly 40% more surface area than a sphere of equivalent volume, thereby greatly 

aiding its function of oxygen transport.  There have been multiple approaches taken to  

determine the material properties of a RBC. Since the RBC is considered to be a 
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membrane enclosed capsule, it was necessary to determine the property of the membrane 

that encapsulates the cytoplasm of the RBC. Initial approaches involved swelling the 

RBC based on osmosis (osmotic swelling), and this technique was used to determine the 

extent of swelling allowed by the RBC membrane. It was deduced that a radius change of 

about 7% corresponded to a volume change of about 74%, but the surface area remained 

roughly the same as the RBC approaches hemolysis. This indicated that the membrane of 

the RBC is quite resistant to area dilatation, even as it deforms or takes on other shapes.  

Multiple approaches were used to determine the area dilatation modulus of the RBC 

membrane – micropipette aspiration, compression plates and deflection by an adhered 

particle. In micropipette aspiration, the cell was swollen to an almost spherical shape by 

suspending it in a hypo-osmotic solution. The swollen cell was then partially aspirated 

into a micropipette thereby giving rise to isotropic tension in the membrane. Using this 

approach, the area dilatation modulus(K) for a RBC was found to range from 288 - 450 

dyn/cm at room temperature [57,63,64].  

Along with area dilatation, the RBC membrane was also found to behave in a 

viscoelastic nature. Using micropipette aspiration again, but this time with normal 

biconcave RBCs, the dimpled portion of the RBC was partially aspirated to determine the 

viscoelastic properties for the RBC membrane. This approach was similar to a membrane 

adhered to glass and the membrane sliding upon the glass in response to an applied force. 

Using this method, the shear modulus of the RBC membrane(µ) was determined to be 6.6 

x 10
-3

 dyn/cm [65]. Other properties of the RBC membrane which were also determined 

were a characteristic surface viscosity(η) of ~10
-3

 Poise-cm and a membrane bending 

modulus or bending rigidity (D) of 10
-12

 dyn-cm.  

Determining the above properties led researchers to estimate an elastic modulus 

for the RBC membrane. This modulus is estimated to range from 3.1 x 10
7
 dyn/cm

2
  to 

3.0 x 10
8
 dyn/cm

2
 in a spherical state [66]. Values of an elastic modulus of the RBC 

membrane in its natural state ranged from 10
4
 dyn/cm

2
 [67] to 7.2 x 10

5
 dyn/cm

2
 [35].  



64 
 

3.2.2 White Blood Cells 

Leukocytes or White Blood Cells (WBCs) are immune system cells which are 

involved in defending the human body against infectious diseases. The presence of 

leukocytes vary depending on the level of infection in the human body, and can be further 

divided into different categories [68]. One type of WBC is a neutrophil which are one of 

the first to respond to an injury or inflammation, and micropipette aspiration experiments 

have been performed on neutrophils to determine their mechanical properties. A 

neutrophil can be thought of as a spherical cell with a diameter of approximately 8 µ[69]. 

Dong et.al. [70] used a Maxwell-Liquid drop model to model a leukocyte which assumes 

a cell to be an elastic cell containing a Maxwell viscoelastic fluid. They determined the 

leukocyte to have an elastic constant ( ) of 28.5 N/m
2
 , a coefficient of viscosity(µ) of 30 

N-s/m
2
 and a cortical tension(To) of 0.031 dyn/cm using best fit to experimental data. 

Based on the nature of their behavior, neutrophils are classified primarily as “liquid” cells 

which flow into a micropipette upon application of suction beyond a particular value 

[69]. Others have determined the cortical tension of a neutrophil to range from 0.024 

dyn/cm [71] to 0.035 dyn/cm [64]. Neutrophils have also been characterized using a 

Newtonian liquid drop model and a linear visco-elastic solid model [72].  

3.2.3 Platelets 

Platelets can be considered to be discoids having a diameter of 2µ. There exists 

one platelet for every 15 RBCs and these cells play a very important role responding to 

areas of injury and kick-starting the process of thrombosis in wound-healing [68]. While 

some approaches have been used to determine material properties of platelets [73] these 

cells are highly sensitive to stress and take on very different properties when activated. In 

computational modeling, platelets are typically modeled as rigid particles [27,74] in 

computational simulations and will not be further discussed in this chapter.  
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The determination of material properties of the cell membrane has led to various 

constitutive models to describe the cell’s behavior. For RBCs, it was generally accepted 

that the biconcave shape was the stress-free shape of the RBC [75], but it was also 

inferred that the RBC membrane was elastic and that it was extremely resistant to area 

dilatation [35]. Various constitutive models were proposed for the RBC membrane 

including Mooney-Rivlin, neo-Hookean and others [22]. Leukocyte behavior has been 

modeled computationally using various approaches. In the compound drop model, the 

cell is described as having an outer membrane, a shell layer and a core [76]. Other have 

treated leukocytes as elastic membranes encapsulating an incompressible fluid [77], with 

additional approached also being exploted [10,78]. As mentioned earlier, platelets are 

typically modeled in their passive states as rigid particles. A detailed description and 

analysis of the various laws that have been proposed and used to model cell membranes 

is given in [79]. The aforementioned material dimensional parameters and material 

properties for RBCs are tabulated in Table 3-1and for WBCs in Table 3-2 respectively. 

While it is clear from the above discussion that the material properties of typical 

circulating cells viz. RBCs and WBCs have been characterized and modeled, there have 

been relatively few studies to determine the mechanical properties of cancer cells in 

suspension. While a large body of research has focused on cancer cell material properties 

when in an adhered state [80,81], it is important to remember that cancer cells often 

traverse the circulatory system during the process of metastasizing and their properties 

when not adhered to a surface(i.e. when the cytoskeleton may not actively be contracting) 

are anticipated to be different. One of the applications of the current research is to 

investigate the role of hemodynamic forces during cancer metastasis, and to model these 

cells, it was necessary to determine the mechanical properties of cancer cells in 

suspension.  
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3.3 Background of Cancer Cell Property Investigation 

Cancer is extremely dangerous primarily due to its ability to spread (metastasize) 

to secondary locations through the process of metastasis.  Over 90% of the deaths due to 

cancer are caused by metastasizing tumors rather than primary tumors[82]. A common 

school of thought about the initiation of metastasis is the seed and soil theory proposed 

by Paget[3], where it was proposed that cancer cells – the seed- will metastasize under 

specific conditions depending on the surrounding organs – the soil. Despite being 

proposed in 1889, Paget’s theory is still considered to be a viable explanation, though 

additional explanations have been proposed which relate metastasis with mechanical 

loading conditions of the tissue surrounding the site of primary cancer. Once a cancer is 

initiated at a primary site, various mechanisms are set into motion which lead to its 

growth, proliferation and ultimately spreading to secondary locations. The major steps in 

cancer metastasis are as follows – (a) a primary tumor grows at a primary site, (b) 

proliferation of the tumor cells occur, leading to the creation of new blood vessels to 

supply nutrients to the tumor (angiogenesis), (c)  detachment of cancer cells from the 

primary tumor and invasion of the cells into the blood circulation and lymphatic 

circulation, (d) spread of cancer cells to various parts of the body through the 

aforementioned circulatory systems, (e) adherence of the circulating tumor cells to the 

lumen of the circulatory vessels in preparation for extravasation, (f) extravasation of the 

tumor cells to secondary sites, (g) establishing of a viable microenvironment to support 

tumor growth at the secondary sites and finally (h) metastasis of cancer at secondary 

sites. A clear review of cancer growth and metastasis can be found in [4]. 

One of the important aims of this research is to investigate the effect of the 

environment that a cancer cell is subjected to when in the circulation, namely the effect of 

fluid shear stress. As described briefly in their paper on the force journey of a cancer cell, 

the authors [83] mention that the cancer cell is subjected to a host of fluid shear forces 

among other forces when in the circulation. This exposure of a new set of mechanical 
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forces hitherto unknown by the cancer cell could possibly effect a change in the 

mechanical and biochemical properties of the cell. Basson and colleagues 

[84]investigated the effect of non-laminar shear stress on the adhesive ability of cancer 

cells and found that shear stress and turbulence may stimulate the adhesion of malignant 

cells shed by colon cancers by a mechanism that requires both actin-cytoskeletal 

reorganization and independent physical force activation of a kinase called Src Kinase. 

The same research group also investigated the effect of pressure on the adhesion of 

cancer cells and noticed similar behavior [85]. A similar study undertaken by Haier and 

colleagues [86] also found that shear can enhance phosphorylation (switching on) of a 

kinase called Focal Adhesion Kinase in colon carcinoma cells thereby leading to 

increased adhesion of those cells. Previous work [87] established the evidence of a 

biphasic viability in the survival of prostate cancer cells when exposed to fluid shear 

stress. In their study, Barnes and colleagues determined that cancer cells seemed to 

“adapt” to a fluid shear environment, thereby increasing their survivability; while non-

cancerous cells were more susceptible to fluid shear stress, and did not change in 

response to exposure of said stresses. This brings to light an important point that 

mechanical stimuli leads to biochemical changes in the cell structure which in turn 

dictates the behavior of the cell. 

   Determining the mechanical properties of cells – human cells, animal cells or 

plant cells has been an active area of research over the latter half of the previous century. 

The basic principle behind investigating mechanical properties is that the cell must be 

deformed by some known force or stress and its deformation must be measured.  Multiple 

methods to investigate mechanical properties for cells have been developed such as 

Atomic Force Microscopy(AFM), Optical Tweezers and Micropipette Aspiration.  In 

AFM [73] [88], the cell surface is depressed (indented) by a probe that moves with a 

constant velocity, thereby providing an increasing force. This force is proportional to the 

deflection of a beam that is very stiff compared to the apparent stiffness of the cell that is 
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being deformed. This method is usually restricted to measuring forces around 50pN, 

however advancement of technology is making possible the application of larger forces.  

In Optical Tweezers (also known as optical trap), a small bead is captured in an optical 

trap (laser beam) which is then made to contact a cell surface. Once contacted, the bead is 

made to move slowly away from its initial position using the laser, thereby extending the 

surface of the cell where contact has been made [89] [38]. The force of extension is 

measured by the deflection of the bead in the trap based on its location from the optical 

axis.  Optical tweezers method is very complicated to implement and is quite unstable 

with respect to bead positioning, laser positioning, etc. Micropipette aspiration was 

developed by Mitchison and Swan in 1950 [90,91]to measure elastic properties of sea 

urchin eggs and has become immensely popular due to its versatility, range of applicable 

forces and its relative simplicity. The micropipette aspiration technique can be used to 

apply forces over a range of three orders of magnitude – from 10pN to 1nN [69]. No 

other single method possesses this wide a range. The biggest motivating factor for 

selecting the micropipette aspiration technique was the fact that the cells can be analyzed 

in suspension, which is extremely pertinent to investigating cancer metastasis where the 

cells are traversing the circulation in a suspended state. Micropipette aspiration has been 

extensively used by researchers to study properties of various cells including the red cell 

membrane [66], chondrocytes[92], neutrophils[64] and others. Due to the simplicity , 

versatility and high relevance to investigating cancer metastasis, the micropipette 

aspiration technique was chosen for investigating the mechanical properties of cancer 

cells. 

3.4 Experimental Methodology 

3.4.1 Micropipette Aspiration Technique 

The forces needed to deform soft cells such as red cells or white cells are of the 

order of 10-100pN while those exerted on stiffer cells such as endothelial cells or 
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chondrocytes are of the order of 1nN [69].  One of the advantages of the micropipette 

aspiration technique is that it can apply the aforementioned range of forces due to the 

varying sizes of micropipette diameters employed. The calculation of forces will be 

described further into this section. The basic idea of micropipette aspiration is that a 

known force (pressure) is applied on a cell through the mouth of a  micropipette onto a 

cell and to measure the deformation of the cell. Figure 3-1 shows the basic ideology of 

this technique.  In Figure 3-1 (a) a cell is “attracted” towards the micropipette by a 

suction    applied to the micropipette. Figure 3-1(b) shows a cell that is aspirated 

partially into the micropipette.  The amount of aspiration into the micropipette depends 

on the suction pressure applied and the membrane properties of the cell. 

Cells can be classified into behaving either as a “fluid” or “solid”. This is deduced 

based on the amount of deformation a cell undergoes in response to an applied pressure. 

The response to either case is similar until a hemispherical projection is formed inside the 

mouth of the micropipette. Beyond that point, a further increase in suction pressure 

causes a “liquid-like” cell to flow completely into the micropipette, while a “solid-like” 

cell will extend its projection into the micropipette until a new equilibrium is attained. 

The force F on a static cell in a micropipette is given by the following equation: 

           
  (3.1) 

where    is the suction pressure applied and    is the radius of the micropipette.  

  During the process of aspiration, the length of projection of the cell inside the 

pipette    has to be scaled appropriately in order to determine the mechanical properties. 

Often in literature,    is scaled with respect to the radius of the pipette    as      . 

Hence, when this ratio is unity, there exists a hemispherical projection of the cell inside 

the pipette. Once the length of the projection of the cell is determined, appropriate models 

can now be implemented to calculate the mechanical properties.  
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Micropipette aspiration has the advantage of determining if a cell should be 

classified as a solid or as a fluid with relative ease. When a cell is classified as a fluid, it 

means that the cell behaves as a liquid drop with constant cortical tension in the 

membrane. This inference is obtained directly from the Law of Laplace when applied to 

the suction of a cell into a micropipette until         , i.e. when there is a 

hemispherical projection of the cell inside the micropipette. In this situation, the cortical 

tension can be determined by the following equation[69]: 

        
 

  
  

 

  
  (3.2) 

where    is the radius of the cell outside the pipette. The shape of the cell outside the 

pipette is normally spherical, or is approximated to a sphere in most cases. This is shown 

schematically in Figure 3-2. This situation is said to be in equilibrium, as any further 

increase in suction pressure will cause the radius of the cell outside the pipette to 

decrease and the reciprocal to increase, thereby upsetting the balance of the equation, 

leading to the cell flowing inside the pipette, a la fluid.  Typical values for the cortical 

tension for a neutrophil (fluid-like cell) were reported to be around 35 pN/µm [69]. 

However, there are also cells that behave as a solid – i.e. they don’t flow freely 

into the pipette when        , but the projection length    increases linearly with 

suction pressure   . This is the case for cells like chondrocytes[92] and endothelial 

cells[93]. In fact, it was shown that chondrocytes behaved as a solid for values of       

that were significantly greater than one. Theret, in his work[93] provided an equation to 

determine a Young’s Modulus for the homogeneous solid 

    
  

 
 

  

  
  (3.3) 

where  is the Young’s Modulus for the homogeneous solid and   is a term that depends 

on the ratio of the thickness of the pipette wall to the radius of the pipette and a typical 

value for         . The values of   for endothelial cells ranged from 103-400 pN/ µm
2
 

[93] and that for chondrocytes was approximately 650 pN/ µm
2
 [92]. 
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Hochmuth[69] also proposed a formula to calculate the equivalent cortical tension 

of a solid cell: 

             
     

   

   
  

  
 
         (3.4) 

Using (3.4), it was possible to obtain a value of cortical tension for a solid cell in order to 

compare the deformability with other cells classified as liquids.    

 

3.4.2 Experimental Setup  

This section describes the experimental setup for conducting the aspiration 

experiment. The major requirements for the setup were as follows: 

1. Micropipette Puller: This is required to pull micropipettes from capillary 

tubes Figure 3-3(a). However the end diameter cannot be achieved directly 

from the micropipette puller, as the requirement for an aspiration pipette is 

that it should have a long taper and should end in a tip with a constant 

diameter for at least 6-7 diameter lengths (parallel walls). 

2. MicroForge: The microforge is used to cleanly cut and polish the end of a 

micropipette Figure 3-3(b). The micropipettes pulled in the micropipette 

puller cannot produce a clean break at the required diameter (2-7µ) and 

hence must be cut and forged under a microforge. 

3. Micromanipulator: The micromanipulator shown in Figure 3-3(d) is 

required to manipulate the micropipette under the microscope very 

carefully so that the pipette tip can be bought in contact with a specific cell 

to be aspirated. It is imperative that the micromanipulator have a very fine 

resolution, as micron to sub-micron level motion is required in all three 

axes. 
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4. Pressure Suction Apparatus: The micropipette aspiration experiment is 

built on the premise that a prespecified suction pressure can be applied at 

the tip of the micropipette. It is necessary to have a wide range of suction 

pressures and to have high resolution.  a water reservoir on a stand whose 

height can be carefully varied was selected to apply suction pressure. The 

change in height of the reservoir directly transfers to a change in pressure 

using the canonical relation between height and hydrostatic pressure. 

5. Microscope: In order to perform the aspiration experiment, unhindered 

access is required to the cell sample on the slide. This necessitates the use 

of an inverted microscope rather than a traditional one, due to the ease of 

access available, shown in Figure 3-3(c). 

6. Camera/Imaging: Applying a suction pressure is one part of the puzzle. 

Measuring the radius of the cell inside and outside the pipette along with 

measuring the radius of the micropipette accurately is very critical to 

obtaining accurate values for cortical tensions and Young’s modulus. This 

mandates a good imaging system capable of capturing crisp and clear 

images at a high resolution. 

The setup used for the MA procedure consisted of a micropipette puller (Sutter 

Instruments P-97), a microforge (Narishige MF-900), a micromanipulator (Scientifica 

LBM-7), thin walled glass capillaries (WPI Inc), a microscope (Nikon TE-300) and a 

camera (AVT Stingray). Preliminary pipettes were pulled on the micropipette puller and 

were broken to the desired size using the microforge. The average internal diameter of 

the micropipette was around 5-8µ, based on the size of the CC. The micropipette was 

filled with the appropriate media using a microfilling needle (WPI Inc MicroFil)  and was 

connected by Tygon® tubing to a fluid reservoir mounted on a linear scale. The 

resolution of the linear scale used to change the height of the reservoir was 0.5mm (which 

corresponded to a pressure change of 4.9 Pa). The micropipette was attached to the 
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micromanipulator which was mounted on a stand. The micropipette was maneuvered into 

position just above the cover glass on the microscope platform using the 

micromanipulator. A schematic of the experimental setup is shown in Figure 3-4.  

The micropipette was positioned into place before depositing a small sample of 

the cell suspension on the cover slip. A cover slip was used instead of a glass slide due to 

the requirement of needing a larger working depth for the objective to capture the 

experiment. All experiments were performed at room temperature. The pressure applied 

to the tip of the micropipette was controlled by raising and lowering the reservoir in 

reference to the height of the microscope stage. The tip of the micropipette was 

positioned near a cell using the micromanipulator.  A small suction pressure was used (~ 

20 Pa) to attract a cell towards the micropipette. This was done not only to attract cells 

towards the pipette, but also in order to “pick up” the cells from the bottom of the sample 

in case they settled down. Precaution was taken to ensure that the cell was completely 

suspended in the sample prior to actually starting the experiment. This methodology is in 

stark contrast to AFM where the cells are adherent to a slide. Once a cell was identified 

as satisfactorily attracted to the micropipette tip, the reservoir was lowered very slightly 

in order to apply increasing amounts of suction pressures via the tip of the micropipette. 

Images were taken at regular intervals noting the position of the reservoir (and thereby 

the applied suction pressure) for every cell. The suction pressures were increased until the 

aspirated portion of the cell began to lose coherence, at which point the experiment for 

that cell was ceased and a new cell was aspirated. The MA experiments were performed 

on the cells at rest in order to establish a reference (control) value of the Young’s 

Modulus for comparison with the cells that were exposed to the FSS protocol. For the 

MA experiments that were performed immediately following the FSS protocol, care was 

taken to complete the MA experiments within 1 hour of the FSS exposure.  The cell was 

allowed to sit undisturbed in the pipette for a few minutes prior to recording the image of 
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the cell at a particular pressure, as only the elastic properties were desired in this 

research.  

3.4.3 Fluid Shear Stress Exposure 

The FSS exposure protocol is described in detail in [87], however a brief 

description is provided here for completeness. A dilute suspension of PC cells of 

concentration upto 5x10
5
 cells/mL was passed through a 30G needle (average internal 

radius = 7.94 x 10
-3

 cm). A syringe pump (Harvard Apparatus PHD-2000 

Infuse/withdraw pump) was used for the experiment. It was calibrated based on the 

syringe and the needle being used to provide the desired flow rates. A range of flow rates 

were used, ranging from 20 µL/s to 250 µL/s (corresponding to a Reynolds number range 

of Re = 159.58 to 1998). The cell suspension was passed up to 10 times through the 

needle. The cells were expelled at a constant flow rate for a specific pass through the 

syringe pump; in a few cases manual expulsion was used. The volume fraction of the cell 

suspension was < 0.2%, thereby facilitating the use of Poiseuille flow relationships in 

order to estimate the fluid shear stress(FSS). The minimum and maximum FSS 

experienced by the cell suspension at flow rates of 20 µL/s and 250 µL/s respectively 

were 510 dyn/cm
2
 and 6400 dyn/cm

2
. The cells were exposed to both the minimum and 

maximum flow rates of the syringe pump to determine changes based on flow rates, if 

any. A schematic of the setup used for the FSS exposure is shown in Figure 3-5. 

3.4.4 Cells 

The transformed prostate cancer cells (PC-3), and immortalized, non-transformed 

prostate epithelial cells (PrEC LH) were obtained from our collaborator, Dr.Michael 

Henry from the University of Iowa Department of Molecular Physiology and Biophysics. 

Details are given in [87]. Briefly, the cells were sourced from ATCC and Clontech and 

were cultured in the recommended prescribed manner. 
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3.5 Results 

Cells can be categorized into two categories – solid or fluid based on their 

response to the suction pressures [69]. The cancer cell exhibited solid-like behavior in 

that it did not flow into the pipette on increasing the suction pressure applied and  hence 

the elastic model described above was chosen for analysis. The images collected for the 

cancer cells not exposed to FSS were analyzed to determine the projection length    and 

the radius of the pipette   . A typical image sequence collected for an experiment is 

shown in Figure 3-6.  

Typical response curves for the projection length versus the applied suction 

pressure are shown in Figure 3-7. As can be seen, there exists a linear relationship 

between the suction pressure     and the projection length   . The Young’s 

Modulus(YM) is obtained from the slope of the observed linear relationship between the 

suction pressure     and the normalized projection length      . 

3.5.1 Young’s Modulus of Cells at Rest 

A suspension of transformed prostate cancer cells (PC-3) and the immortalized 

epithelial cells (LH) separately was prepared and tested for their mechanical properties at 

rest, i.e. when not exposed to shear stress. The YM for the PC-3 at rest was PCunsheared = 

19.96 ± 6.77 Pa (n=54), while the YM for PrEC LH cells at rest was LHunsheared = 47.78 

± 25.15 Pa (n=47). A bar-plot of the Young’s Modulus is shown in Figure 3-8. 

3.5.2 Young’s Modulus of Cells after Exposure to High 

Shear  

The transformed and non-transformed cells were exposed to the highest flow rate 

that could be applied by the syringe pump. As mentioned above, the cell suspension was 

passed 10 times through this syringe. The MA experiments were conducted immediately 

after the cells were exposed to shear stress. The YM for PC-3 cells was 35.35 ± 13.99 Pa 
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(n=58) and for PrEC LH cells was 43.7 ± 21.21 Pa (n = 45). A summary plot of the YM 

for both PC-3 and PrEC LH cells is shown in Figure 3-8. 

3.5.3 Young’s Modulus of Cells after Exposure to Low 

Shear 

The transformed cells (PC-3) were also subjected to low shear to determine the 

response in elastic modulus, if any. The YM for PC-3 cells after 10 passages through the 

syringe at low shear was 29.26 ± 10.37 Pa (n = 45). 

3.5.4 Young’s Modulus of Cancer Cells after Exposure to 

One Pass at High Shear 

The FSS protocol included passing the suspension of cells through the syringe for 

10 passes. It was decided to conduct a test of passing the suspension of PC-3 cells 

through the syringe for 1 pass at the high shear rate and determine the YM to see if there 

was any change. Upon passing the PC-3 cells for 1 pass at the high shear rate, the YM of 

PC-3 cells was found to be  27.5 ± 10.0 Pa (n = 45). A summary plot of the YM for the 

PC-3 cells is shown in Figure 3-9. 

3.5.5 Equivalent Cortical Tension 

As mentioned earlier, the equivalent cortical tension of all the cells tested thus far 

was determined using (*). The cortical tension for the unsheared PC-3 cells was found to 

be 133.8 ± 56.13 x 10
-6

 N/m (n=54) and for the PC-3 cells exposed to 10 passes at high 

shear it was found to be 203.8 ± 57.2 x 10
-6

 N/m (n=58). The equivalent cortical tension 

for the unsheared PrEC LH cells was found to be 346.43 ± 199.0 x 10
-6

 N/m (n=47).  

The results for all of the aforementioned experiments for both PC-3 and LH cells 

are tabulated in           Table 3-3 and           Table 3-4. 
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3.6 Discussion 

The micropipette aspiration technique was successfully applied to investigate the 

behavior of PC-3 cells and PrEC LH cells both at rest and after being exposed to FSS. 

The use of MA is important in that it is one of the few methods in which the mechanical 

properties of the cell can be investigated when the cell is in suspension. This is very 

pertinent to the current research, where it is attempted to determine the effect of FSS on 

the PC-3 cells during the spread of PC-3 cells from the primary tumor to a secondary site 

via the circulatory systems (blood and lymphatic). The range of FSS to which the PC-3 

cells were exposed is a physiological range which they can expect to see when in the 

microcirculation [87]. Moreover, the biphasic viability displayed by the PC-3 cells 

indicated that they adapted to the FSS. 

Firstly, our study found that at rest, the Young’s Modulus of PrEC LH is about 

130% stiffer than PC-3 cells, with the distribution of PC-3 cells about four times 

narrower than the PrEC LH cells. This compares well with other researchers who have 

used Atomic Force Microscopy to determine the Young’s Modulus [80,81,94–96] and 

found that the PrEC LH cells were ~80% stiffer than transformed cells and that the 

distribution of the PrEC LH cells was six times that of the transformed cells.  

Until now, the impact of FSS exposure on the Young’s Modulus of Cancer Cells 

has not been investigated. Using micropipette aspiration, we examined how FSS 

exposure impacts the Young’s Modulus of cells. We found that the Young’s Modulus of 

PC-3 cells exposed to high FSS was almost double that of the PC-3 cells at rest, i.e. there 

was an almost 80% increase in the Young’s Modulus upon exposure to high FSS. After 

exposing the PC-3 cells to 1/10
th

 the shear rate (Low Shear), we found the Young’s 

Modulus to increase by ~45% after 10 passages through the syringe. The Young’s 

Modulus of the PC-3 cells after exposure to only 1 pass at high shear was found to be 

very similar to the Young’s Modulus after 10 passages at high shear. This indicates that 

the PC-3 cells seem to display a graded response to the magnitude of FSS. The acquired 
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stiffness of the PC-3 cells was dependent on the level of FSS exposure, with increasing 

exposure resulting in a higher Young’s Modulus.  

Interestingly, the change in the survivability of PC-3 cells after exposure to low 

shear was found to be shear dependent [87], so that at low levels of fluid shear, most of 

the PC-3 cells (~90%) survived after 10 passages through the syringe. This contrasts 

starkly with the behavior of PC-3 cells upon exposure to high shear, where they show a 

biphasic survival and only ~55% of the PC-3 cells survive at this high rate of shear after 

10 passages through the syringe. In addition, the survival and the Young’s Modulus of 

PC-3 cells after 1 passage at high shear (250 µL/s) was similar to the survival of PC-3 

cells after 10 passages at low shear (20 µL/s). In contrast, there was no significant change 

in the Young’s Modulus of PrEC LH cells upon shear exposure, indicating that the 

stiffening is a phenomenon only present in cancerous cells. A histogram of the Young’s 

Modulus is shown in Figure 3-11 and a dot plot showing all the data points and the 

spread of data for PC-3 cells is shown in Figure 3-10. 

The equivalent cortical tension for the aforementioned cells was also calculated as 

per [69]. Though it is not an actual cortical tension as the cells are classified as a 

homogeneous solid, it nevertheless provides a means to compare the deformability 

against more fluid-like cells. The cortical tension for the PC-3 cells at rest was almost 4 

times that of neutrophils [69]. As the PC-3 cells stiffened themselves upon shear 

exposure, the cortical tension of PC-3 cells after exposure to high shear was almost 6 

times that of a neutrophil. The cortical tension of the PrEC LH cells was almost 10 times 

that of neutrophils. Conversely, the equivalent cortical tension of the PC-3 and PrEC LH 

cells were an order of magnitude lower than that obtained for endothelial cells, whose 

cortical tension was found to be ~100 times greater than neutrophils. This indicates that 

while the PC-3 and PrEC LH cells are definitely stiffer than neutrophils, they are much 

more compliant as compared to other cells characterized as a solid like endothelial cells 

[93] or chondrocytes [92]. Thus from the perspective of flow behavior, the values of 
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cortical tension obtained in this way could shed light on how PC-3 cells behave in the 

microcirculation in comparison to other circulating cells like neutrophils and RBCs.  

An interesting hypothesis that may be postulated is based on the values of 

Young’s Modulus for the PC-3 cells at low shear (10 passes), high shear (1 pass) and at 

high shear(10 passes). The flow rates used for the low shear runs were 1/10
th

 that of the 

flow rates used for the high shear runs. Coincidently, the Young’s Modulus for the PC-3 

cells exposed to 10 passes at low shear overlap almost exactly with the Young’s Modulus 

for the PC-3 cells exposed to 1 pass at high shear. This hypothesis that could be 

postulated is that the PC-3 cells exhibit not only an acquired response to fluid shear, but 

that the response is cumulative based on the levels and exposure time of fluid shear 

stress. However much more testing needs to be done in order to confirm this hypothesis.  

It has been recognized that not all the cancer cells that enter the bloodstream will 

actually contribute towards metastatic growth [97]. This metastatic inefficiency coupled 

with the death of a majority of the circulating tumor cells within a few hours of entering 

the circulation has been well documented phenomenon [4,97–99]. It is also known that 

cancer cells undergo extensive modifications in their cytoskeleton prior to intravasation 

into the circulatory system [100–102]. In their review on the physics of cancer metastasis, 

the authors [82] mention that shear stress is one possible factor that impacts the distal 

metastasis site. However, they acknowledge that information regarding the behavior of 

cancer cells in response to fluid shear stress is still extremely limited.  

The histogram of the Young’s Modulus of the cells in Figure 3-11 indicate a 

much wider range of Young’s Modulus for the PC-3 cells exposed to FSS as opposed to 

the control group. There could be multiple reasons for the same, one of which is a simple 

explanation that not all the cells are exposed to the same levels of FSS upon passage 

through the needle, a result of the expected parabolic (Poiuiselle) flow profile. Another 

possible explanation is the fact that different cells are adapting differently, based on their 

ability to withstand FSS. This might also provide insight into the survival of only a few 
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PC-3 cells that enter the circulation. A third, equally plausible explanation could be that 

the PC-3 cells tested were in different stages in their mitosis cycle, and hence were of 

differing maturity when tested, leading to uneven response to FSS.  

The current study is one of the first studies to investigate the effect of FSS on the 

mechanical properties of cancer cells using the micropipette aspiration technique. The 

importance of this technique is underscored by the fact that during metastasis, the cancer 

cells enter the circulation and are in a suspended state until they extravasate to a 

secondary site. Thus the findings of this study are highly relevant to cancer metastasis. 

We have determined that PC-3 cells display varying levels of stiffening based on the 

magnitude of fluid shear stress that they are exposed to. We have also shown that this 

stiffening appears to be limited to cancer cells only and is not present in non-transformed 

cells. The fact that almost 90% of the PrEC LH cells die after the FSS protocol suggests 

that the PrEC LH cells are not able to withstand let alone adapt to the FSS environment. 

On the other hand, PC-3 cells change their properties and appear to become increasingly 

resistant to FSS exposure. Moreover, the PC-3 cells display a lesser change in their 

Young’s Modulus when exposed to low shear in comparison to high shear, where they 

exhibit a biphasic viability curve and a lower survival rate.   

The circulatory system is a harsh environment [83] where fluid shear stresses 

abound. Our study sought to investigate the effect of fluid shear stress on the mechanical 

properties of cancer cells by subjecting them to flows of Reynolds numbers from 100 -

2000 . This corresponds to a fluid shear stress range of 500 dyn/cm
2
 – 6400 dyn/cm

2
.  

While the average shear stress in typical arterial circulation is ~ 15 dyn/cm
2
, the local 

fluid shear stress can be as much as 3000 dyn/cm
2 

near the walls of large vessels, 

turbulent blood flow, near the presence of mechanical prostheses and during 

atherosclerosis [2,103]. Our study found that PC-3 seems to adapt itself to FSS by 

making itself upto 80% stiffer after exposure to the aforementioned range of shear stress. 

While the stiffening of cells could be one of the manifestations of a cellular level 
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response to fluid shear stress, this could enable the survival of a select few cancer cells 

which then go on to metastasize. Thus our study on elastic property change could 

possibly be used a stepping stone towards diagnosing cancer metastasis, along with other 

mechanical properties such as viscoelasticity [95].  

3.7 Summary and Future Work 

The objective of the current chapter was to explore the material properties of 

various cells in the circulation. While the material properties of RBCs and WBCs in the 

circulation have been characterized in the literature, there is still a dearth of information 

for cancer cells in the circulation. Hence it was decided to undertake a related secondary 

project to determine the material properties of cancer cells especially when exposed to 

fluid shear.   

In the present study, we have observed that cancer cells appear to stiffen upon 

exposure to fluid shear stress. This stiffening appears to be graded based on the 

magnitude of fluid shear stress exposure. Interestingly, this is stark contrast to the 

behavior of LH cells which do not show any change in Young’s Modulus upon fluid 

shear stress exposure. The observation that the stiffening is a cancer cell-only 

phenomenon sheds new light on the behavior of cancer cells during metastasis. 

Mechanical stimuli has been shown to be responsible for inducing a biochemical 

response related to increased potential for PC-3 cell adhesion and extravasation to 

secondary sites [84–86].  While our study described the cell as simply an elastic 

continuum, it provides significant insights into the response of cancer cells to fluid shear 

and must be investigated further. We anticipate that determining the viscoelastic 

properties of cancer cells exposed to fluid shear would be the next logical step, along 

with using more complex models to describe the cytoskeletal structure. It is important to 

acknowledge that the micropipette aspiration technique is ideally suited to investigating 

the mechanical properties of a cell in suspension, which is highly pertinent to cancer 
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metastasis research. While the perceived change in the elastic modulus of cancer cells 

exposed to fluid shear may not be conclusive that stiffening is the intended response, it 

sheds new light on shear induced mechanical responses of cancerous cells and could 

potentially be used for diagnostic purposes, and possibly develop new strategies to 

combat cancer. Moreover, the values of Young’s Modulus for the PC-3 cells seem to 

point towards a cumulative response hypothesis, which could also contribute to our 

understanding of the behavior of circulating cancer cells. The over-arching goal of the 

current research to obtain and use the mechanical properties of cancer cells in 

computational simulations of cancer metastasis is one of the novel approaches that could 

be used to gain more understanding about the physics of cancer.  
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         Table 3-1: Typical values for material properties of RBCs [61] 

          

           

         Table 3-2: Typical values obtained for material properties for WBCs[61,69] 

 

 

 

CELL TYPE RBC 

Shape Biconcave  

Diameter (µm) 7.85 

Thickness (µm) 2.58 

Surface Area (µm
2
) 135 

Volume (µm
3
) 94 

Area Dilatation Modulus K (dyn/cm) 450 

Shear Modulus µ (dyn/cm) 6.6 x 10
-3

 

Bending Rigidity D (dyn-cm) 10
-12

 

Elastic Modulus E (Pa) 3.1 x 10
7
 

CELL TYPE Neutrophil (WBC) 

Shape Spherical 

Diameter (µm) 8 

Cortical Tension To (dyn/cm) 0.031 – 0.035 



84 
 

 

Figure 3-1: 2-D Schematic showing micropipette aspiration (a) A micropipette is 
manipulated towards the cell and a small suction pressure is applied (b) The 
cell gets partially aspirated in the micropipette, with the projection length 
depending on the suction pressure. 
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Figure 3-2: 2-D Schematic showing micropipette aspiration of a cell with relevant 
measurements indicated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

 

 

 

 

Figure 3-3: Some of the main apparatus used for micropipette aspiration: (a) Micropipette 
puller (Sutter Instruments P-97) (b) Micro Forge (Narishige MF900)  (c) 
Inverted Microscope (Nikon TE-300) (d) Micromanipulator (Scientifica Little 
Blue).  
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Figure 3-4: Schematic of Experimental Setup to perform Micropipette Aspiration 
experiments. 
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Figure 3-5: Schematic of Setup for Fluid Shear Stress Exposure. 
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Figure 3-6: Typical sequence of images collected for an aspiration experiment. Suction 
pressures are mentioned on the top left in every image. 
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Figure 3-7: Typical results for relationship of suction pressure and length of projection of 
the cell inside the pipette. The length of projection is normalized by the radius 
of the pipette. The Young’s Modulus is obtained from the slope of the linear 
fits. 
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Figure 3-8: Comparison of Young’s Modulus for Transformed and Non-transformed 
cancer cells at rest and after exposure to high shear. There is a ~77% increase 
in the Young’s Modulus of Transformed cells after being exposed to high 
shear, but no discernible change can be seen for the Non-Transformed Cells. * 
denotes p<0.05 
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Figure 3-9: Comparison of Young’s Modulus for Transformed at rest, after exposure to 
10 passages at high shear, after exposure to 10 passages at low shear and after 
exposure to a single pass at high shear. There appears to be a graded response 
to the level of fluid shear stress that the cancer cells are exposed to. * denotes 
p<0.05 
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Figure 3-10: Dot Plot showing all data points collected for all PC cells (unsheared, low 
shear 10 passages, high shear single passage and high shear 10 pasages).  
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Figure 3-11: Comparison of Histogram of Young’s Modulus(E) for unsheared and 
sheared PC cells and LH cells. The different distributions of data can be 
clearly seen. The standard deviation of the PC unsheared cells is over six 
times smaller than the unsheared PrEC LH cells.  
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Cell type 

(Description) 

Elastic Modulus 

(Pa) 

% difference compared 

to unsheared 

*p<0.05 

PrEC LH 

(Unsheared) 
47.72 ± 25.7 Pa 

(n=47) 

N/A 

PrEC LH 

(10 Passes, High Shear) 
43.7 ± 21.21 Pa 

(n = 45) 

4% decrease 

PC-3 

(Unsheared) 

19.76 ± 6.77 Pa 

(n=54) 

N/A 

PC-3 

(Low Shear) 

29.26 ± 10.37 Pa 

(n = 45) 

48% increase * 

PC-3 

(Single Pass, High Shear) 

27.5 ± 10.0 Pa 

(n = 45) 

46% increase * 

PC-3 

(10 Passes, High Shear) 

35.35 ± 13.99 Pa 

(n = 58) 

77% increase * 

 

          Table 3-3: Elastic Moduli obtained for both PC-3 and PrEC LH cells for the case of 
not being exposed to shear and after being exposed to different levels of shear 
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Cell type 

(Description) 

Equivalent Cortical Tension 

(µN/m) 

PrEC LH 

(Unsheared) 
     346.43 ± 199.0 

            (n=47) 

PrEC LH 

(10 Passes, High Shear) 
-- 

PC-3 

(Unsheared) 

133.8 ± 56.13 

(n=54) 

PC-3 

(Low Shear) 

227.6 ± 85.33 

(n = 45) 

PC-3 

(Single Pass, High Shear) 

229.05 ± 79.75 

(n = 45) 

PC-3 

(10 Passes, High Shear) 

203.3 ± 96.7 

(n = 58) 

 

          Table 3-4: Equivalent Cortical Tension for PC-3 and PrEC LH cells where the 
data is shown for the case of not being exposed to shear and the effect of 
various levels of shear on the PC-3 cells 
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CHAPTER 4 

MODELING SINGLE CELL DYNAMICS 

4.1 Introduction 

Blood is a suspension of particles. The focus of discussion thus far has been 

primarily on modeling blood cells from a cellular perspective. However, one of the aims 

of this research is to develop a general framework for multiple particles potentially 

composed of a variety of cell types – red/white blood cells, platelets, cancer cells, etc. In 

order for the behavior of blood to be simulated realistically, these constituents should be 

such that their presence and behavior influences, and is influenced by, the fluid 

surrounding them. The current chapter deals with the fluid-structure interaction (FSI) 

between a blood particle and the surrounding plasma. A brief review on interaction 

methodologies provides the motivation for the FSI technique chosen. A detailed 

description of the implementation of the chosen technique is provided and various 

benchmark for validation, along with some parametric studies are highlighted.  

4.2 Review of FSI methodologies 

The blood particulates – RBCs, platelets, WBCs, etc. – are together called formed 

elements of the blood and these occupy roughly 45% of the volume of blood; the rest is 

plasma. In the micro-scale, the behavior of individual blood particulates play a vital role 

in the dynamics by influencing, and in turn being influenced by, the surrounding plasma. 

Thus it becomes essential that the individual particulates (blood cells) be highly resolved 

and deformable in order to capture the micro-scale dynamics. For the purpose of 

computational simulations, an RBC can be thought of as a “capsule” which is an elastic 

membrane enclosing a fluid of either same or different properties as that of the 

surrounding fluid. This approach has been adopted by myriad researchers in the past  

[8,16,30,31]. The initial approach in this field was using perturbation methods pioneered 

by Barther-Biesel and co-workers [8,29,30]. Using a capsule representation, spherical 



98 
 

cells were simulated in Stokes flow using linearized models where the spheres were 

allowed to deviate only a small amount from their resting shape. Though these were 

initial attempts, some inferences were drawn about the deformability of capsules in 

simple shear flow, including possible tank-treading behavior. The viscosity ratio of the 

fluids interior and exterior to the capsule was not varied. The capsule representation was 

also utilized by Ramanujan and Pozrikidis using a boundary element method [16]  . In 

their approach, Stokes flow was again simulated, and the viscosities of the interior and 

exterior fluid was varied. The boundary element method was discussed as being primarily 

applicable for potential flow problems and was highly mathematically intensive. These 

methods were primarily adopted for flows with known analytical solutions, and were the 

first few to foray into the field of FSI for cells and capsules. Secomb et al performed 2-D 

simulations of blood cells using interconnected viscoelastic elements [104] where both 

the RBC and the fluid were discretized using finite element (FEM) methods. However, 

this necessitated a re-meshing of the domain after every time step. Moreover, all the 

research mentioned so far were for individual particles in known flow conditions, or in 

single file capillaries.  

The actual physiological blood flow environment is a very complex, dynamic and 

fully 3-D environment that has to be simulated taking the complexity into account. Due 

to the complex nature of flow, the computational methods have to be adaptive and should 

be able to resolve high gradients near the particle interfaces and at the walls. Recent 

advances in computational modeling and in technology have led to the development of 

methods such as 3-D boundary integral methods, immersed boundary methods and 

immersed interface methods [23] .  

One of the methods that is extensively used for deformable objects embedded in 

flows is the immersed boundary method (IBM). This method was pioneered by Charles 

Peskin in the 1970’s for investigating blood flow in the heart [12,105]. Because of its 

versatility, this method has been adopted to numerous other situations of flows with 
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embedded objects such as heart valves, blood cells, etc. Eggleton and Popel  [30] used the 

IBM to perform 3-D simulations of an RBC as a capsule in simple shear flow. Pozrikidis 

adopted the IBM to investigate single RBCs in shear flow in 3-D [105]. Eggleton’s model 

incorporated a hyperelastic constitutive model by Skalak [35] for the membrane 

mechanics, while Pozrikidis used a neo-Hookean model. These works paved the way for 

future, more resolved studies of deformable cells immersed in fluid. Bagchi in 2007 

performed 2-D simulations of upto 2500 deformable RBCs in channels between 20 and 

250µm [11]. The fluid interior to the cell was assigned a viscosity that was five times 

higher than the surrounding fluid. AlMomani et al in 2008 performed 2-D simulations of 

erythrocyte-platelet interaction in blood flow [14].  While Bagchi’s model simulated 

deformable cells, AlMomani et al used pseudo-rigid representations of RBCs and 

platelets. This was followed by Bagchi in 2009 who performed 3-D simulations of up to 

122 deformable RBCs employing a neo-Hookean membrane model [31]. This work also 

employed different viscosities in the interior of the fluid, and was implemented using a 

front-tracking method developed by Unverdi and Tryggvason [106]. The main advantage 

of the IBM method was that it was designed for handling immersed Lagrangian entities in 

an underlying Eulerian fluid mesh. Moreover, a body-conforming mesh was not required, 

and this advantage lends itself beautifully to an application that is proposed in this 

research. The IBM is well established in the field of simulating FSI of deformable 

particles and hence it was chosen for FSI. 

4.3 The Immersed Boundary Method 

4.3.1 Methodology for IBM 

   The IBM was pioneered by Peskin in 1977 in his work about investigating 

blood flow in the heart. The basic idea of this method is to have a separate “fluid mesh” 

and a separate “solid mesh” and the two meshes interact with each other where required 

using forces. This allows for using any kind of solvers for the fluid and solid separately, 
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which is one of the highlights of this method. The fluid can interact with the solid by 

prescribing velocities (and hence deformations) and the solid can interact with the fluid 

by means of forces. The solid entity is simply “immersed” in the fluid, and the fluid mesh 

has no knowledge of its existence, save for the forces conveyed to the fluid at specific 

points at the boundary. 

   There exists, thus, two separate systems – an Eulerian system for the fluid 

where the fluid equations are solved, and a Lagrangian system for the solid – where the 

solid mechanics equations are solved. These two sub-systems are independently 

calculated and interact only at interfaces. A schematic for this system is shown in Figure 

4-1 [26] where Ωf  is the fluid domain and Ωb denotes the boundary of the 2-D solid. In 

the fluid domain, the traditional equations, viz. the continuity and the momentum 

equations hold: 

    ⃗    (4.1) 

    
  ⃗⃗ 

  
  ⃗    ⃗            ⃗  (4.2) 

Equation (4.1) and (4.2) shows the basic continuity and momentum equations for 

the fluid in dimensional form. Here,  ⃗  is the velocity vector, p is pressure,   is the fluid 

density, and  is the fluid dynamic viscosity. For the IBM, the momentum equation is 

modified to include a source term which incorporates the effects of the stresses in 

structure. Thus, the modified momentum equation becomes: 

   ( 
  ⃗⃗ 

  
  ⃗    ⃗  )          ⃗    (4.3) 

where F is a source term arising from the force generated in the membrane of the cell. 

This communicates to the fluid the presence of the force in the solid membrane. This 

force term is zero where a solid membrane is not present.  
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4.3.2 The Fluid Solver 

Before proceeding to the mechanisms of the IBM and force interactions, it is 

important to describe the fluid flow solver in general. Briefly, the discretization of the 

fluid domain can be described as a hybrid collocated cell-centered grid where the velocity 

vector and the pressure are stored at the cell centers, and a secondary set of mass-

conserving velocities are stored at the cell faces. A four-step fractional step method is 

employed to solve the primitive variable values at the next time step. This is highlighted 

briefly below, and a more extensive description can be found in [107].  

   The fractional step method consists of four steps: 

First step: This step provides the initial provisional velocity field by solving an 

unsteady advection-diffusion equation. The incompressibility condition is not explicitly 

enforced in this step. A second order Adams-Bashforth explicit scheme is used for 

discretization in time for the non-linear convection term: 

   ⃗    ⃗  
 

 
  ⃗       ⃗       ⃗     ⃗    

 

 
(   ⃗          ⃗   ) (4.4) 

The diffusion terms are treated implicitly using a Crank-Nicholson scheme. Here, 

H is a discrete spatial approximation of the non-linear term and L is a spatial 

approximation to the Laplacian: 

 
 

  
    ⃗   

 

   
    ⃗      ⃗    

 

   
(   ⃗       ⃗   ) (4.5) 

The resulting equation for this step is ( ⃗⃗  is the membrane force transferred to the 

fluid from the solid using the IBM which is explained in the next section): 

 ⃗    ⃗     [
 

 
(   ⃗          ⃗   )  
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 )]   ⃗⃗  (4.6) 
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Second step: In the second step, the estimation of the pressure used for calculation 

of the velocity field ( ⃗  ) will be removed in order to obtain the second intermediate 

velocity field: 

  ⃗     ⃗       (   
 

 ) (4.7) 

Third step: In the third step, a Poisson equation is solved to obtain the pressure for 

the next time step. This Poisson equation is derived by initially performing a Helmholtz-

Hodge decomposition of ( ⃗   ) into its solenoidal and irrotational vector components  ⃗  and 

  : 

  ⃗     ⃗       (4.8) 

The Poisson equation is then obtained by taking the divergence of the above 

equation (4.8) and mandating that  ⃗     be divergence free: 

     
   ⃗⃗   

  
 (4.9) 

It is important to note that  is not pressure, but is instead a purely mathematical 

variable that can be related to pressure only when the discretization scheme has been 

chosen. This Poisson equation is solved to obtain the intermediate pressure    
 

   subject 

to the following Neumann boundary conditions: 

  (   
 

 )  
   ⃗⃗    

  
 (4.10) 

  (   
 

 )   ⃗       (4.11) 

Fourth step: In the fourth and final step, the provisional velocity obtained in the 

second step is projected onto the divergence free space where the final velocity ( ⃗    ) is 

obtained: 

  ⃗      ⃗           
 

   (4.12) 

 

 



103 
 

4.3.3 Interfacing with solid entity (NM-I and NM-V)  

Recall from Chapter 2 the steps involved in performing a complete fluid-solid 

interaction calculation in the current framework. Computing a single time step broadly 

entails the following sub-steps: 

For Time Step tn: 

NM-I. Determine Boundary Conditions to be applied 

to the NURBS entity 

NM-II. Apply the Boundary Conditions obtained in 

NM-I to the NURBS entity 

NM-III. Characterize deformation of NURBS entity 

NM-IV. Determine entity-specific Membrane restoring 

forces 

NM-V. Communicate the presence of membrane forces 

to surrounding fluid 

Repeat for Time Step tn+1. 

While Chapter 2 dealt with Steps NM-II to NM-IV, Steps NM-I and NM-V will 

be described in detail in this chapter. The IBM procedure is described in Figure 4-2. In 

Step NM-I, the boundary conditions to be applied to the solid are specified, i.e. the 

velocities are transferred from the fluid to the solid to enforce kinematic compatibility at 

the interface. This ensures that the velocity at an “interface” point (i.e. shared point 

between the solid and the fluid) is the same irrespective of the domain (Lagrangian or 

Eulerian), essentially enforcing the no-slip condition. Mathematically, this is shown as: 

 
   

  
       (4.13) 

where    denotes any point in the Eulerian (flow) domain and     denotes any point on 

the Lagrangian (solid) domain. At a given timestep, the velocity at a solid interface point 

can be interpolated from the velocities of the adjacent fluid points using a delta function. 
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        ∫  (  ) (      )     
 (4.14) 

where       denotes the velocity of the solid membrane and   (  ) denotes the velocity 

of the surrounding fluid. The delta function   used in (4.14) is adopted from [106] and is 

a product of three one-dimensional delta functions  (      )    (      )  (   

   )  (      )  and is defined in (4.15): 

  (      )  {
       ∏ (     

 

  
(   

     
))   

     |   
     

|    

           
 (4.15) 

where   is the Eulerian grid size for the fluid domain and   denotes the dimension of the 

problem considered, which is 3 for the purpose of this work. This provides the 

contribution of  all the fluid nodes lying within a sphere of influence of radius    around 

the point of interest while all other points lying outside the sphere of influence have null 

or zero contributions. This is highlighted schematically in Figure 4-3 for a simple 2-D 

case, where the circle of influence (blue dots) denotes all the fluid points that will 

contribute to the value of the parameter (eg. velocity) at the solid node (red dot) in the 

center. All the other fluid nodes (outside the black dotted circle) do not contribute 

towards the value of a parameter at the central solid node. This idea is directly extended 

to 3-D where all the fluid nodes lying inside the sphere of influence will contribute to a 

non-zero delta function value, hence contributing to the value of a parameter at a solid 

node.  The delta function is zero everywhere, except where a solid membrane is present, 

thereby ensuring that only the fluid in the immediate vicinity of the solid experiences a 

contribution via the source term. 

Once the velocities are interpolated at the solid points, the NURBS isogeometric 

analysis procedure described in Chapter 2 is performed and the membrane forces are 

calculated. Step NM-V of the FSI procedure involves spreading the membrane forces 

from the solid to the surrounding fluid points, a task that is carried out by using the same 

delta function described above. The force given to the fluid is included a source term in 
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the momentum equation (4.2) thereby achieving closure. The elastic forces in the cell 

membrane are coupled to the fluid via the source term F and the delta function: 

  (  )   ∫       (      )     
 (4.16) 

where       is the elastic force generated in the solid membrane. This completes the FSI 

problem. A flowchart showing the information flow for FSI is shown in Figure 4-4. 

In order to specify different properties for the interior and exterior of the 

membrane, a front tracking algorithm is used for the membrane. Briefly, the delta 

function described in (4.15) is used to determine the fluid points in the vicinity of a 

membrane point   . Once all the surrounding fluid points are determined, the unit normal 

 ⃗⃗  is used to identify the points in the interior of the membrane. The entire interior of the 

particulate is then identified using a fast-marching algorithm [108]. An indicator function 

       is used to specify the viscosity in the interior of the RBC, described in (4.17). 

           (     )       (4.17) 

where    is the viscosity of plasma which is specified as 1.2 cP and    is the viscosity of 

the cytoplasm of the RBC, which is  specified as 6 cP, thereby providing a viscosity ratio 

      ⁄    , as reported to be physiological values in viscosity [68]. The viscosity 

ratio for spherical particulates is maintained at unity for simplicity. 

4.4 Single Blood Particulate Micro-scale Dynamics using 

IBM 

4.4.1 Validation: Sphere in Linear Shear Flow 

As a first test case, the motion of a sphere in a linear shear flow was simulated. 

This is a well-documented case for finite element models [16,109,110]. Briefly, the 

sphere is placed at the center of a domain with a fully developed shear flow. The shear 

flow profile is            with k being the non-dimensional shear rate and   is the 

vertical distance from the center of the domain. The length scale chosen is the radius of 



106 
 

the sphere      , the time scale is        ̇ where  ̇ is the shear rate, the velocity 

scale is      ̇ and the Capillary number is           where µ is the fluid viscosity 

and    is the membrane shear modulus. The constitutive model used for this simulation 

was the extensively used neo-Hookean model, details of which can be found in [11,79]. 

The value of    is chosen to be                  concurrent with published values 

[110]. The viscosity of the fluid is chosen to be that of plasma – 1.2 cP and the density of 

the fluid is taken to be              . Various Capillary numbers were simulated 

and the measure of deformation of the spherical cell was captured by the Taylor 

Deformation Parameter               where   is the length and   is the width of 

the capsule in the plane of shear. For the sake of simplicity, the inner and outer fluid have 

the same fluid properties and bending was neglected. A schematic of the flow field to 

which the sphere is subjected to is shown in Figure 4-5.  Figure 4-7 shows the late-stage 

deformed  shapes of the sphere for various Capillary numbers. This matches published 

results [16,30,110]. A mesh density analysis was performed for a high Capillary number 

of 0.1, with meshes ranging from 176 elements to 9472 elements. The evolution of the 

Taylor Deformation parameter for Ca = 0.1 for various meshes is shown in Figure 4-8. 

The error in the coarsest model with 176 elements was ~5%, with the error reducing to < 

1% for models with higher number of elements. All the models including the coarsest one 

captured the asymptotic nature of the deformation very well. The evolution of the 

deformation parameter for various Ca is shown in Figure 4-9, compared with the 

evolution of the deformation parameter from [110]. It can be clearly seen that the 

NURBS isogeometric Analysis captures the asymptotic evolution of the Deformation 

Parameter very accurately for the range of Capillary numbers from 0.025 to 0.2. The 

NURBS mesh used for the sphere consisted of 2432 elements. This strongly shows the 

advantage of using isogeometric Analysis over conventional FEM based methods, in that 

highly coarse meshes can be used while still preserving accuracy and geometric fidelity. 

While a much coarser solid mesh could have been employed for the NURBS analysis, the 
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limitation of this method is the use of the IBM for FSI, which requires a specific solid 

mesh density based on the fluid mesh. That the NURBS based isogeometric analysis 

allows the use of extremely coarse meshes while still providing accuracy in results is well 

documented in the paper by Hughes et al [39]. 

4.4.2 Validation: Sphere in Parabolic Flow 

In order to simulate the motion of blood particulates in the micro-circulation, the 

behavior of cells under capillary (parabolic) flow were simulated next. For validation 

purposes, the behavior of a sphere in a fully developed Poiseuille flow profile was 

studied. This is based on a previous simulation performed by others [31,111] in order to 

test the extent of deformation of the spherical cell based on the flow profile. In an 

unhindered flow, the sphere deforms and attains a steady state shape based on the Ca as 

long as the length of the capillary or channel is enough to attain steady state. An increase 

in Ca leads to an increase in the deformation of the particle, and is also dependent on the 

material properties of the membrane. In addition, the size ratio between the capsule 

diameter and the capillary or channel width bears an influence on the way the particle 

deforms and if it reaches steady state. A schematic of this case is shown in Figure 4-6. 

In order to compare with the simulations of [111,112], the ratio of the capillary 

width to cell diameter     was maintained at 1.3 and the Ca = 0.04. A mesh 

independency study was also carried out for this case, with the coarsest mesh having 176 

NURBS elements, the medium mesh having 640 NURBS elements and the fine mesh 

having 2432 NURBS elements. A comparison of the steady state shapes for all three 

meshes is shown in Figure 4-10 along with the steady state shape reported in [112] for the 

same case parameters. While the membrane model in [112] was reported to be neo-

Hookean, no moduli parameters were provided and hence the current NURBS model 

used typical parameters used for RBC membranes, i.e.                  and bending 

was neglected. It can be seen that the three NURBS meshes almost overlap each other 
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and the curvatures at the front and rear of the spheres match the final shape of [112] very 

well.  

 

4.4.3 Validation: RBC in Parabolic Flow 

The deformation of an RBC in Poiseuille flow in a capillary was simulated next. 

The case of an RBC in a capillary and/or channel is interesting because of the various 

phenomenon noticed in capillary flow such as Fahraeus-Lindqvist effect, cell free zone 

[9,113], reduction in apparent viscosity, reduction in hematocrit [2] and others. 

Moreover, the motion of RBCs through capillaries become even more interesting because 

the RBCs can fold and bend dramatically to squeeze through capillaries half its diameter 

[17,114]. The ability of the RBC to undergo such drastic deformations is in part due to 

the unique nature of the membrane which allows it to deform but strongly resists area 

dilatation [35,68,75].  

 For validation purposes, the flow of an RBC with 440 NURBS elements in a 

capillary at Ca=0.1 was considered. Beginning from an unstressed, biconcave shape, the 

RBC deforms and achieves a parachute shape. Moreover, the portion of the RBC facing 

the flow bends into a convex shape while the rear of the RBC away from the direction of 

flow deforms into a concave shape. The RBC reaches a steady state and is then convected 

without undergoing any additional deformation. Figure 4-11 shows the comparison of the 

steady state shape obtained by the NURBS model and the shape reported in [115] for the 

same conditions. It can be seen that the NURBS model matches the reported shape very 

closely. Despite the coarse representation, the model is able to capture accurately the 

different curvatures at the front and rear of the RBC. The steady state shape obtained by a 

finer NURBS model with 1680 elements (not shown) overlapped the steady state shape 

obtained by the coarser mesh with 440 elements. Thus both the coarse and fine NURBS 

meshes capture the curvatures of the biconcave RBC in parabolic flow very well.  
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4.4.4 Parametric Study: Sphere in Shear Flow 

The effect of different membrane laws on the behavior of a sphere deforming in 

shear flow were simulated for a fixed Ca of 0.1 .Using the deformation behavior of a 

model with a neo-Hookean membrane as a reference, the behavior of the same spherical 

model under the action of the well-known Skalak law [35] with different membrane 

properties was simulated. The Skalak Law is replicated here for convenience.  
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 (4.19) 

where   is the strain energy density function,           are principal stretches,   and    

are the principal invariants based on [22]. The factors    and    are membrane material 

properties. For the Skalak Law, the value of    was maintained at                 and 

the area modulus    was varied over a range of values such that the ratio C defined above 

ranged from C = 1 to 1000. All other parameters namely the NURBS mesh and the fluid 

mesh were kept constant. The time step had to be reduced for the higher area moduli in 

order to achieve steady-state like behavior. The behavior of the sphere under the 

aforementioned membrane laws is shown in Figure 4-12. As can be seen, there is a 

substantial difference in the evolution of the deformation parameter as the membrane law 

is changed. Specifically, the sphere undergoes less deformation as the membrane 

becomes stiffer, as was expected. It is interesting to note that the late-stage deformation 

of the sphere for stiffer membranes is similar to a sphere with a neo-Hookean membrane 

at lower capillary numbers. Due to the high computational cost involved with an 

extremely small time step at the higher values of C, the simulation was not carried out for 

longer times. The behavior of stiffer membranes indicates that as the membrane becomes 

stiffer, it not only reaches steady-state faster, but also undergoes substantially lesser 

deformation than a more compliant membrane. This has significance in modeling 

spherical cells of varying membrane properties namely leukocytes and cancer cells. 
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4.4.5 Parametric Study: Sphere in Parabolic Flow 

The motion of a sphere in parabolic flow in the same capillary used for RBC case 

was simulated. This was done to ensure that we can capture the deformation of the 

spherical cell in parabolic flow, as it is envisioned to simulate multiple cells – both 

biconcave and spherical in a dynamic setting. The size ratio and the parabolic flow 

velocity was maintained the same as that used for the RBC case. The Ca used in this case 

is also 0.6, and the constitutive model used in the neo-Hookean model. For the sake of 

simplicity, the inside and outside fluid have the same fluid properties and bending was 

neglected. The evolution of the spherical shape is shown in Figure 4-14. As reported in 

[31], the front and rear portions of the sphere respectively become more convex and 

concave with the development of almost sharp edges at the transition between the 

curvatures. The maximum deformation occurs in the     plane while the shape in the 

    remains largely unchanged from a circle. The spherical model used in this 

simulation had 640 elements. 

The motion of a sphere in a 3-D parabolic flow in a capillary was simulated next. 

By 3-D, the parabolic flow profile depended on the position of the y and z-position of the 

cell unlike the previous cases where the parabolic flow profile depended only on the y 

position. Thus the parabolic flow profile is that of a paraboloid or a conical profile. The 

evolution of the spherical shape is shown in Figure 4-14. It can be clearly seen that 

starting from a sphere, the cell deforms into a “bullet” like shape, going on to deform into 

a paraboloid shape due to the flow around it. This is in qualitative agreement of the 

shapes obtained experimentally by Risso. et.al. in [116], a snapshot of which is shown in 

Figure 4-14(a). There is very good qualitative agreement of the deformed shapes of the 

sphere when subjected to the paraboloid flow. The spherical model used in this 

simulation also has 640 elements. 

As a next logical step the effect of different membrane laws for a sphere in 

Poiseuille flow with the capillary number Ca = 0.125 was investigated. The ratio of the 
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capillary width to cell diameter     was maintained at 1.6. Three different membrane 

models were utilized – neo-Hookean, Skalak model with C =1 and a Skalak model with 

C = 10 (refer above for description of C ). Snapshots of the shapes at end-stage are shown 

in. Figure 4-13 where it can be seen that the model with the neo-Hookean membrane 

undergoes the most deformation, with the Skalak models deforming to a lesser extent. It 

is also interesting to note that while the neo-Hookean and Skalak C=1 models display a 

convex surface in the rear portion of the sphere, the model with the Skalak C=10 

membrane displays a concave surface. This indicates that the membrane model 

significantly impacts the extent of deformation of a particulate in capillary flow in the 

micro-circulation.   

 

4.4.6 Parametric Study: Biconcave RBC in Parabolic Flow 

The motion of a biconcave RBC in a fully developed planar Poiseuille flow 

(parabolic flow) in a capillary was simulated next. This is also a well-documented test 

case by researchers in the past [31,104,117]. The ratio of the capillary width to cell 

diameter     was maintained at 1.6, with the length scale being the same as the previous 

test case – the radius of the cell. This size ratio between the tube and the cell was chosen 

to mimic the reality of the flow of a cell through a capillary of comparable size to the 

cell, which entails the cell to deform substantially. The velocity scale here was the 

centerline velocity of the flow of fluid in the capillary,            . The Reynolds 

number is defined as            and the Capillary number is defined as    

      . The Ca tested was 0.6, which meant that the cell had to undergo a large 

deformation in the tube. For the sake of simplicity, the inside and outside fluid have the 

same fluid properties and bending was neglected. The results of the simulation are shown 

in Figure 4-15(a). The initially biconcave RBC slowly deforms into a parachute shape on 

account of the parabolic flow profile. The shape of the cell in the     plane remains 
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largely unchanged from the initial shape – a circle. These results are in agreement with 

both simulations and experiments [31][116]. The RBC model used in this simulation had 

440 elements. 

The effect of membrane laws on the behavior of an RBC in 3-D Poiseuille flow 

(paraboloid velocity profile) in a capillary was investigated. The capillary number was 

0.1 and two membrane models were used – a neo-Hookean model and a Skalak C=1 

model. The evolution of the RBC shape as it is subjected to a fully developed Poiseuille 

flow is shown in Figure 4-16. The neo-Hookean model undergoes considerable 

deformation due to the compliant nature of the membrane model, while the Skalak model 

undergoes considerably lesser deformation. This has implications in studying sickle cell 

anameia and/or malaria where the deformability of the cell becomes affected thereby 

preventing the RBC from traversing the microcirculation with efficacy of a normal RBC 

[118–120]. Figure 4-17 shows smooth renderings of the stages of deformation of an RBC 

in a capillary, showcasing the ability of NURBS to achieve smooth, potentially 

physiologically realistic deformations with very few elements. 

 

4.4.7 Parametric Study: Biconcave RBC in Linear Shear 

Flow 

Lastly, the motion of biconcave RBCs in shear flow was investigated. The 

dynamics of RBCs in shear flow is quite interesting, as RBCs are known to undergo 

tumbling motion at specific shear rates. Moreover, the tumbling dynamics are different 

for different shear rates. In this study, the effect of shear rates and different membrane 

laws on the tumbling dynamics of RBCs in shear flow was investigated. Shear rates of Ca 

= 0.0125, 0.025, 0.05 and 0.1 were simulated. The viscosity ratio of the RBCs was kept at 

the physiological value of 5. The viscosity of the fluid inside the RBC was updated at 

each timestep using the front tracking method described earlier. The membrane models 
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were the same as that used for testing the behavior of a sphere under different membrane 

laws in Poiseuille flow - neo-Hookean, Skalak model with C =1 and a Skalak model with 

C = 10. For quantifying the tumbling dynamics, a deformation parameter        

         where   is the length and   is the width of the midplane of the RBC in the 

plane of shear was used, as defined in [109,110]. The RBC is oriented at an angle of π/4 

at time t*=0. All the simulations for RBC in shear flow were carried out with 440 

NURBS elements. 

   For the purpose of comparison the case of the RBC described with the Skalak 

C=1 model for the lowest Ca = 0.0125 and the highest Ca = 0.1 is considered.  Figure 4-

18 shows the sequence of deformation of the RBC under Ca = 0.0125. The RBC 

undergoes an almost rigid-body like tumbling at this Ca. Fig Figure 4-20 and Figure 4-21 

shows the deformation parameter     versus -θ/π for this case. Because the RBC has a 

biconcave shape to begin with, the deformation parameter does not start at 0 unlike that 

for a sphere. The amount of deviation of      from the initial value represents the extent 

of deformation of the RBC from its stress-free biconcave shape. The purpose of plotting 

    versus -θ/π is to investigate the extent of deformation with respect to the orientation 

of the RBC at any point. It can be seen that the qualitatively observed almost rigid-body 

like rotations in Figure 4-18 translates quantitatively to an almost constant     over the 

entire duration of one rotation. In contrast, Figure 4-19 shows the sequence of 

deformation and rotation of the RBC with the same membrane model but at Ca = 0.1. It is 

evident that the RBC undergoes considerably much more deformation at this high 

capillary number. As the RBC begins to tumble, it also gets stretched in the direction of 

shear until it reaches a sleeping position. Beyond this point the RBC actually undergoes 

compression as it tumbles further, which can be seen in Figure 4-19. This stretching and 

compression of the RBC translates into a large deviation from rest state of    , which is 

plotted in Figure 4-20. While the     for Ca= 0.0125 remained largely constant at 

around 0.78, the     for Ca=0.1 deviates to 0.5 and begins to return to its original value. 
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This shows that the RBC responds to the stretching of itself by pulling back in an attempt 

to return to its stress-free state. Also shown in Figure 4-20 is the     for Ca=0.05 for the 

Skalak C=1 and Skalak C=10 membranes along with the     obtained by Pozrikidis 

[21]. The Skalak C=10 membrane closely follows the modified neo-Hookean membrane 

employed in [21]. It is also clear that not only does capillary number impact the tumbling 

dynamics, but membrane models play an important role in it as well. 

   After validating the tumbling dynamics of an RBC in shear flow, the effect of 

membrane laws on the tumbling dynamics were briefly investigated. All simulations were 

performed with only 440 NURBS elements. Three membrane models were simulated – 

neo-Hookean, Skalak C=1 and Skalak C=10 membranes at Ca=0.0125, 0.025, 0.05 and 

0.1. For the lowest capillary number Ca=0.0125, only the Neo-Hookean and Skalak C=1 

membranes were simulated as simulating the Skalak C=10 membrane required an 

extremely small timestep which was extremely computationally intensive. However, the 

tumbling dynamics at Ca=0.0125 did not differ much between the neo-Hookean and 

Skalak C=1 models as the RBC underwent almost rigid-body like rotations without much 

deviation in shape. The deformation parameter     was calculated for all cases in order 

to quantitatively compare between them. Figure 4-21(a) shows the deformation parameter 

for Ca = 0.025 for all three membrane models. It can be seen that while there is not much 

deviation between them due to the tumbling being close to rigid-body like rotation, the 

Skalak C=1 model deviates slightly more than the other models. The difference between 

the three models becomes even more pronounced at Ca = 0.05 where the Skalak C=1 

model deviated much further than the Neo-Hookean model, as shown in Figure 4-21(b). 

Interestingly, the neo-Hookean model reaches a minima early on during the rotation 

while the Skalak C=1 model reaches its minima later after almost completing an entire 

rotation before the RBC tries to actively regain its stress-free state. Also, while the neo-

Hookean model is able to revert back very closely to its stress-free state, the Skalak C=1 

model is not able to do so. The Skalak C=10 model prevents the RBC from deforming as 
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much as the other two models, which results in it maintaining its shape as close to the rest 

shape as possible over the duration of an entire rotation. The difference in tumbling 

dynamics between the membrane models is the most pronounced for the highest capillary 

number of 0.1. Figure 4-19 and Figure 4-22 shows the sequence of deformation of an 

RBC with a neo-Hookean model for Ca=0.1. It can be clearly seen that the RBC 

undergoes considerable deformation as the flow stretches it out to a large extent. The 

RBC is unable to prevent the large deformation due to the high capillary number as well 

as the membrane law. In contrast, the Skalak C=1 membrane prevents the RBC from 

deforming significantly, and is able to retain a more coherent shape closer to the 

biconcave shape. The plot     versus orientation for Ca=0.1 is shown in Figure 4-21(c). 

It can be clearly seen that while the Skalak C=1 model deviates considerably from the 

rest shape while the Skalak C=10 membrane is able to prevent a large deviation 

throughout the tumbling process. Also shown in Figure 4-21 is the     obtained in [21] 

for a modified neo-Hookean model with different elastic moduli. Thus the presence of a 

stiffer membrane has a considerable impact on the dynamics of an RBC in shear flow, 

with the stiffer membrane resisting deformation compared to a more compliant 

membrane.  

4.5 Discussion and Summary  

Simulating micro-scale blood flow dynamics entails two-way communication 

between the solid and the fluid, necessitating the implementation of a FSI algorithm. Due 

to the use of an underlying Cartesian mesh for simulating the fluid flow in an Eulerian 

setting, the Immersed Boundary Method was chosen for FSI. In the IBM, the solid 

entities are treated as Lagrangian entities immersed in an underlying Eulerian grid, 

making the method perfectly suited for the current research.  

The IBM was successfully implemented and incorporated into the existing 

Cartesian grid solver ELAFINT. Details on the IBM implementation were provided and 
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explained. The IBM was tested in conjuction with the NURBS-based isogoemetric 

analysis approach described in Chapter 2 in order to perform FSI simulations. The 

implementation of the IBM was tested in multiple cases simulating the motion of a sphere 

in shear flow, the motion of a sphere in Poiseuille flow, the motion of RBCs in Poiseuille 

flow and the motion of RBCs in shear flow and were validated against published 

literature [21,31,110,112,115]. In addition to the aforementioned basic validation cases, 

the IBM implementation was further utilized in investigating the effect of membrane 

models on the flow dynamics of various cells.  

The use of NURBS based analysis presents a very promising potential in FSI 

based applications such as those described in this chapter. The NURBS FSI procedure 

was validated by simulating various test cases such as shear flows and parabolic flows for 

both spherical and biconcave RBC models. Despite using substantially coarse meshes, 

not only was the geometry of the models replicated during flow, the dynamics of the 

system was also captured accurately and efficiently. Parametric studies were performed 

for multiple test cases of spherical and biconcave cells in shear and parabolic flows. The 

membrane properties were varied in order to investigate the effect of stiffer membranes 

on flow dynamics. In all the cases that were simulated, using stiffer membranes resulted 

in reduced deformation of the NURBS entities. Successfully capturing the different 

behavior of the blood particulates for different membrane laws displays the efficacy and 

utility of the NURBS modeling approach.  

While the use of the IBM limited the mesh density of the NURBS models (the 

extremely coarse models could not be simulated due to restrictions on the grid sizing on 

the fluid side), other FSI methods can be employed in the future which exploits the coarse 

representation of the NURBS models to the fullest. Also, the current models contained a 

convergent pole both in case of the RBC and the spherical model. This was done in order 

to have a single NURBS Patch, or sheet, describe the complete cell and its deformation. 

The presence of a pole is known to have adverse effects especially in interacting with the 
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surrounding fluid [37,121]. In the future, models can be created with multiple NURBS 

patches such that a pole can be avoided. Other isogeometric modeling techniques such as 

T-Splines can also be utilized, if necessary[40].  As mentioned before, the global least 

squares based technique for effecting deformation may not preserve the surface normals 

very accurately and localized schemes can be implemented [59,122]. 

To summarize, the IBM was described and implemented in order to achieve FSI 

between the solid (blood cell) and the surrounding fluid. The NURBS based isogeometric 

analysis in conjunction with the FSI through IBM was successfully implemented  in a 

three dimensional setting and was validated against canonical simulations. The advantage 

of NURBS in using very coarse representations of the entities (blood cells and 

particulates) was presented and employed in a series of test cases to validate the efficacy 

of this approach.  
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Figure 4-1: 2-D schematic of the two domains that exist in the IBM framework: Ωf is the 
fluid domain and Ωs denotes the boundary of the immersed 2-D zero-
thickness membrane. 
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Figure 4-2: Schematic of steps involved in IBM to communicate between the solid and 
the fluid. Information about the boundary conditions from the fluid 
(velocities) is provided to the sold via a delta function, and the same delta 
function is used to transmit information about the membrane forces back from 
the solid to the fluid. The forces are incorporated as a source term in the 
momentum equation for the fluid and the system is solved. 
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Figure 4-3: 2-D schematic of contributing fluid nodes for the delta function used to 
interpolate values of boundary conditions to be applied between solid and 
fluid. Only the fluid points within the sphere of influence will contribute to the 
delta function; all other points will not have any contribution.  
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Figure 4-4: Flowchart showing the procedure to perform FSI using IBM. 
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Figure 4-5: Schematic of problem setup for analyzing the deformation of a sphere in 
linear shear flow described in section 4.4.1 with the Eulerian (Ωf ) and 
Lagrangian   (Ωs) domain shown. 
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Figure 4-6: Schematic of problem setup for analyzing the deformation of a biconcave 
RBC and a spherical cell in parabolic flow described in section 4.4.2 and 4.4.3 
with the Eulerian ( Ωf )and Lagrangian ( Ωs ) domain shown. 
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Figure 4-7: Behavior of a sphere in linear shear flow (a) Schematic of shear flow setup 
for validation. The sphere is introduced at the center of the domain. (b) Late-
stage deformed profiles of spheres for various capillary numbers. The initial 
undeformed shape is also shown (c) Flowfield around sphere at Ca = 0.025 
and Ca = 0.1 (d) Velocity vectors in (c) and (d) clearly show the presence of 
circulatory flow. 
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Figure 4-8: Mesh Density study for various NURBS meshes for the deformation of a 
sphere for a high Capillary number of 0.1.  There is approximately a 5% error 
in the coarsest model with 176 elements. The error in all the other meshes 
compared to [110] is less than or equal to 1.5%. 
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Figure 4-9: Evolution of the Taylor Deformation Parameter for a sphere in shear flow for 
various Capillary numbers compared to published results using FEM [110] 
described in section 4.4.1. It can be clearly seen that the NURBS models can 
capture the asymptotic behavior of FEM based models for the range of 
Capillary numbers tested. 
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Figure 4-10: Validation of Sphere in Parabolic Flow with mesh density study compared 
with published data from [112], described in section 4.4.2. It can be clearly 
seen that the NURBS models with 176 elements captures the deformed steady 
state shape of the sphere. Also shown are the steady state shapes for NURBS 
models with 640 and 2432 elements. 
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Figure 4-11: Validation of Biconcave RBC in Parabolic Flow in a Capillary with Ca = 
0.1 . Steady state shapes are shown (●)  [115] (— ) NURBS RBC Model of 
present research with 440 NURBS elements. The NURBS RBC model with 
only 440 elements  clearly captures the curvatures in the steady state shape 
achieved using FEM [115] 
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Figure 4-12: Evolution of the Taylor Deformation Parameter for a sphere in shear flow 
for Ca =0.1 for different Membrane Laws. The sphere undergoes lesser 
deformation as the membrane becomes stiffer. 
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Figure 4-13: Comparison of steady state shapes shapes attained by a sphere in Poiseuille 
flow at Ca=0.125 in a capillary, a schematic for which is shown in (a) for 
different membrane models – neo Hookean, Skalak C=1 and Skalak C=10. It 
can be seen that the stiffer membrane models do not allow the spherical cell to 
deform as much as the compliant neo-Hookean model. 

 



131 
 

 

 

 

 

Figure 4-14:Behavior of a sphere in Poiseuille flow  (a) Cross Sectional and 3-D views of 
the deformed shapes of a Sphere in fully developed 3-D Poiseuille flow in a 
tube. The Capillary number is 0.125 and the ratio of tube diameter to the 
diameter of the cell is 1.6. The NURBS mesh used consists of 640 elements. 
Also shown is a digitized image of the experimentally obtained shape of a 
capsule in a parabolic flow with Ca = 0.125[116] (b) 3-D views of the 
deformed shapes of a Sphere in fully developed Poiseuille flow in a tube. The 
Capillary number is 0.6 and the ratio of tube diameter to the diameter of the 
cell is 1.6. The NURBS mesh used consists of 640 elements. 
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Figure 4-15: Behavior of an RBC in Poiseuille flow (a) 3-D views of the deformed 
shapes of a RBC in fully developed Poiseuille flow in a tube. The Capillary 
number is 0.6 and the ratio of tube diameter to the diameter of the cell is 1.6. 
The NURBS mesh used consists of 440 elements. (b) Flowfield around the 
RBC in the computational domain, with the velocity vectors depicting the 
Poiseuille flow shown. 
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Figure 4-16: Stages of deformation of RBC in Parabolic (3D Paraboloid) flow, a 
schematic of which is shown in (a). The Capillary Number Ca = 0.1 and the 
membrane law is the classic neo-Hookean law in (b) and the Skalak Law (c). 
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Figure 4-17: Stages of deformation of RBC in Parabolic (3D Paraboloid) flow for Ca = 
0.1 and using the Skalak Membrane Law in 3D (previous image in rhino). 
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Figure 4-18: Stages of deformation of RBC in Shear flow at Ca = 0.0125  for the 
membrane law Skalak C = 1. The RBC undergoes an almost rigid-body like 
rotation. The NURBS RBC model has 440 elements (a) Schematic of flow 
setup (b) Stages of deformation of RBC. t* denotes non-dimensional time 
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Figure 4-19: Stages of deformation of RBC in Shear flow at Ca = 0.0125 (top)  and Ca = 
0.1 (bottom) for the membrane law Skalak C = 1. The RBC undergoes an 
almost rigid-body like rotation for the lower capillary number, while it 
undergoes considerably more deformation at the high capillary number of 0.1. 
The RBC model has 440 NURBS elements and the time intervals are the same 
as the previous image. 
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Figure 4-20: Evolution of the deformation parameter Dxy with orientation for different 
capillary numbers and membrane models. Also shown is the deformation 
parameter obtained in [21] for Ca = 0.05. It can be seen that as the capillary 
number increases, the RBC undergoes more deformation leading to a larger 
deviation of Dxy from the rest state. 
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Figure 4-21: Evolution of the deformation parameter Dxy with orientation for different 
capillary numbers and membrane models. Also shown is the deformation 
parameter obtained in [21] for Ca = 0.05 and Ca = 0.1. It can be seen that as 
the capillary number increases, the RBC undergoes more deformation leading 
to a larger deviation of Dxy from the rest state. (a) Ca = 0.025 (b) Ca = 0.05 
and (c) Ca = 0.1 
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Figure 4-22: Comparison of deformed configurations of RBC in the midplane of the flow 
domain for Ca = 0.0125 (Skalak C=1 model) and Ca = 0.1 (Skalak C=10 
model). It can be seen that while the RBC undergoes almost rigid body-like 
rotation for the lower capillary number, it deforms considerably for the high 
capillary number case. 
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CHAPTER 5 

ENABLING EFFICIENT MODELING OF LARGE NUMBER OF 

CELLS INCLUDING CELLULAR INTERACTIONS 

5.1 Introduction 

One of the primary objectives of this research is to develop a framework for 

modeling and simulating the micro-scale blood particulate dynamics, along with 

implementing a novel methodology to model a single particulate. However simulating 

multiple particulate dynamics is non-trivial due to restrictions in the computational and 

modeling domains. This chapter primarily deals with the computational architecture 

implemented in order to simulate multiple cells. A brief overview of the scale of the 

problem at hand is presented, followed by a description of the computational architecture. 

The FSI problem is revisited from a multiple particle simulation perspective and finally 

some basic test cases simulating multiple particle dynamics are presented using the 

implemented approach.  

5.2 Modeling Large Number of Blood Cells: The Scale of 

the Problem 

Human blood is a dense suspension of multiple particulate matter, which makes 

up roughly 45% of the blood by volume [2]. This translates to over 2.5 x 10
13

 blood 

particulates in an average human body at any given point of time [1]. The blood 

particulates traverse the circulation, passing through blood vessels ranging from O(cm) –

O(µm); i.e. they traverse though pathways that are three orders of magnitude apart. Along 

the way they encounter countless bifurcations, high shear flows and are constantly 

colliding and interacting with each other. Modeling blood flow through the human body 

by taking each blood particulate into account is a non-trivial problem due to the 

unimaginable scale. Modeling a single drop of blood would entail simulating 10 million 

blood particulates, each deforming and behaving in its own way. Thus the problem of 
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modeling blood particulate dynamics at a relatively physiological level is a tremendous 

challenge, and one that researchers have been attempting to solve from almost a century 

[2,9,12,22].  

While a comprehensive review on modeling blood particulate dynamics is out of 

the scope of this work, an attempt has been made to mention some of the important 

approaches. Refer to Chapter 2 for more details and references. A multi-particle 2-

dimensional simulation was performed by AlMomani et al [14] who used pseudo-rigid 

particles for RBCs and rigid particles for platelets. Particle-particle interactions were 

accounted for based on the distance between particles. Modeling blood particulates as 

rigid or pseudo-rigid particles was used by many researchers in as it enabled capturing 

some of the interactive dynamics while attempting to model multiple cells with the 

available computational capability. Chakroborty et al [123]  used a smoothed profile 

method to model blood particulate dynamics in 2-D. Chesnutt and Marshall [124] used 

discrete element method while keeping the particles rigid ellipsoids. They modeled cell 

aggregation and flow dynamics through bifurcations simulating up to 2500 particles. Sun 

and Munn [10] used a Lattice-Boltzmann method to simulate the aggregation and flow of 

2-dimensional blood cells modeled as rigid capsules interacting with each other. There 

were multiple investigations on blood flow simulations using deformable blood particles 

in 2-dimensions. Secomb et al [104] used multiple deformable blood particles to study 

migration and bifurcation flow behavior. Zhang et al [113,125] modeled RBCs as 2-

dimensional deformable particles using the Lattice-Boltzmann method and used the IBM 

for FSI and cell-cell interactions. Doddi and Bagchi [126] and Bagchi [11] used FEM and 

IBM for simulating the motion of 2-dimensional RBCs in capillary flow.  

It is only over the past two decades that researchers were able to delve into 3-

dimensional simulations on account of the advancements in computational capability. 

Pozrikidis [21,127,128] used a combination of quadratic elements based FEM and IBM 

to simulate the motion of RBCs in canonical flows. Dupin and co-workers [18,129,130] 
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modeled blood particulates as fully deformable 3-dimensional particles using the Lattice-

Boltzmann Method and applied their models to simulate various flow conditions. Doddi 

and Bagchi [31] used FEM to simulate the flow of spherical and biconcave particles in 

Poiseuille flow in a capillary in 3-dimensions using IBM. While many attempts have 

been made thus far in modeling blood particulates in three-dimensions, achieving a 

physiologically realistic simulation continues to remain a challenge [23]. While the 

majority of modeling techniques for RBCs involve the use of the FEM, they are 

characterized by the use of large number of elements per cell , typically O(1000) -

O(10,000) elements [30–32,38]. This makes the calculations highly computationally 

intensive, especially when attempting to simulate multiple cells. Furthermore, most FEM 

approaches use lower-order elements, which negatively affect accuracy [39]. There have 

been some attempts at achieving coarse-grained models [60], but this leads to a loss in 

resolution of the geometry [50] along with the accuracy of stress calculations. Various 

methods exist for simulating blood cells in relatively high fidelity – ranging from the 

Lattice Boltzmann method [10], Discrete Particle Dynamics [60] and  multiparticle 

collision dynamics [131] ; however simulating a large number of cells in a dynamic 

environment becomes impractical and unfeasible on account of high computing 

requirements.   

The current research attempts to use a novel isogeometric modeling technique to 

achieve accurate and efficient coarse-grained blood particulate models using NURBS. 

Moreover, using the combination of NURBS and IBM, the current research also aims to 

implement a computationally efficient architecture to model and simulate multiple 

particulates to achieve a large-scale, scalable simulation framework to model large 

number of cells in the future. The computational architecture should be able to adapt 

dynamically in both space and time with respect to the available computational resources. 

Moreover it is envisioned that the architecture be able to handle multi-scale simulations  

involving meso-scale and micro-scale particles, often simultaneously.  



143 
 

The computational architecture being implemented should adhere to a set of 

objectives based on both practicaland extensible constraints: 

1. It should be based on an Object Oriented Programming(OOP) Structure 

2. It should cater to multiple insertions and deletion of particles based on 

flow conditions 

3. It should possess the ability to work with particles of multiple genres 

(meso-scale or micro-scale) on an as-needed basis 

4. It should provide for existence of different kinds of particles (RBCs, 

platelets, cancer cells) of both genres 

5. It should provide for efficient utilization of available memory, especially 

in a parallel framework 

Prior to proceeding with the actual computational architecture, a brief background 

is provided about the need for OOP. 

5.3 Object Oriented Programming Structure 

In the context of this research, the blood particulates are modeled not only as 

different particles with different material properties and sizes, but also from the context 

of multi-scale modeling. The multi-scale framework consists of three major scales – 

macro, meso and micro, as explained in Chapter 2.  The data structure described herein is 

developed to cater to both the meso-scale and the micro-scale models in one unified 

framework. It is worthwhile to reiterate that the meso-scale models are predominantly 

rigid bodies while the micro-scale models are fully deformable 3-D entities. This entails 

different attributes to be assigned to different scale models, a characteristic which is made 

capable by utilizing OOP. 

Particles in the meso-scale are modeled as rigid bodies – the RBCs are modeled as 

3-D ellpsoids while the platelets and cancer cells are modeled as spheres of differing 

sizes based on the physiological dimensions.  The meso-scale model of blood particulates 
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thus would contain generic attributes such as position of the particle center. The generic 

particle class would be called “Generic Particle”. This would correspond to the parent 

class in Figure 5-1. Attributes specific to any meso-scale particle would be defined in a 

class “Meso-Scale Particle” which would be inherited from the Generic Particle class. 

This would include attributes such as radii of the particle, velocity, torque and other 

dynamic attributes. The Meso-Scale Particle class would correspond to the children level 

class in Figure 5-1. Furthermore, accounting for the existence of different kinds of 

particulates such as RBCs, platelets and cancer cells, individual classes would be created 

for each type of particle with the aforementioned names. These classes would correspond 

to the object level in Figure 5-1.  

Similar to the implementation of the data structure for the meso-scale particles, 

the micro-scale particles would also be represented in terms of classes inherited from the 

father level class which represents a generic particle. However, in the case of the micro-

scale particle, the particle is modeled as a fully deformable 3-D particle based on the 

NURBS representation explained in Chapter 2. Hence it would possess NURBS based 

attributes such as locations of the control points, knot points, NURBS basis functions, 

etc. Also, the different blood particulates are modeled with physiologically realistic 

shapes and dimensions – the RBC is modeled as a biconcave ellipsoid, the platelet and 

the cancer cell are modeled as deformable spheres with their respective material 

properties. Hence the schematic of the data structure for representing the micro-scale 

particle would be similar to that of the meso-scale particle but containing the NURBS 

attributes, as shown in Figure 5-1 which incorporates the descriptions of both meso-scale 

and micro-scale particles, depicting the framework of the particulate representation. 
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5.4 Linked List Architecture 

A Linked List (LL) is a data structure that is similar to an array. While an array 

only stores a set of values like velocity, pressure, etc., it does so in a consecutive block of 

memory. This translates to the restriction of availability of consecutive memory locations 

to store and retrieve data. While arrays may be simple to implement on a small scale, it is 

not suited for large scale applications when a multitude of different data types are 

involved. As explained earlier, an OOP based data structure is implemented for obtaining 

the flexibility of dealing with multiple particles of multiple genres under a unified 

framework, as proposed in OBJ-II and OBJ-III. The presence of this transient 

environment necessitates the use of a dynamically robust data structure.  Hence the 

implementation of a LL-based architecture was chosen and implemented. 

The fundamental difference between an array and a LL is that while an array 

allocates memory for all its elements together as one block and is not dynamic in nature, 

a LL separately allocates memory for each of its data entries, called “nodes”. This data 

entry consists of two parts – data and a pointer. The data portion of the LL may be 

comprised of any kind of data – ranging from standard variables like integer or float to 

complex data types like objects of a class. The pointer section of a node is akin to a link 

in a chain – it points to the memory location of the next node in the LL. A schematic is 

shown in Figure 5-2. 

A LL is created when multiple nodes are inserted connected to each other. The LL 

is identified by the first node, called the “head” node. The head node usually does not 

contain any specific data, but is the most important node, as its pointer section contains 

the memory address of the first actual data-containing node of the LL. The LL is 

populated as more nodes are inserted, with the location of each succeeding node being 

“pointed to” by the pointer section of each preceding node. A schematic of how a LL is 

populated is shown in Figure 5-2(b). 
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5.4.1 Inserting a node in a Linked List 

Inserting a node is a LL is straightforward, and this is one of the most important 

advantages of a LL. When a node is to be inserted, memory is dynamically allocated on 

the fly on an as-needed basis from the available pool of memory. Once the memory is 

allocated, the pointer of the head node is given the address of the new node, and the 

pointed of the new node is assigned the address of the first node, which was initially 

stored in the head node. In this way, the default insertion of a node is always at the 

beginning of the LL. However, the architecture of the LL data structure provides for easy 

insertion of a node at any desired location in the LL, as shown in Figure 5-3(b),(c). 

5.4.2 Deleting a node from a Linked List 

Deletion of a node from a LL is as straightforward as insertion in reverse. When 

any specific node is to be deleted, the preceding node’s pointer is simply assigned to the 

location of the pointer of the node to be deleted to ensure unbroken continuity of the LL. 

The memory associated with the node to be deleted is deallocated, thereby freeing 

memory space for re-utilization. During deletion, a basic check is performed so as not to 

delete the head node accidentally, as that would make the accessing of the LL impossible. 

This is shown schematically in Figure 5-3(d) for a LL initially shown in Figure 5-3(a). 

5.4.3 Tailoring a Linked List for the Current Research 

In the current research, it is envisioned to utilize the LL architecture to develop a 

framework wherein multiple cells of different genres can co-exist. It is also necessary to 

incorporate the ability to effect a transition of the type of the cell based on its location in 

the computational domain. For instance, a cell which was initially present in the meso-

scale region is convected into a region designated for further analysis in the micro-scale. 

This necessitates that the particle transition from a rigid-body type model to a deformable 

NURBS based model while preserving the generic particle attributes such as position of 

the center, velocity, etc. At the same time it is necessary that the particle is not 
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recognized as an entirely new particle, but as a particle whose model has changed. In 

other words, the location of the particle in the LL does not change, only its model should 

be updated. This ability to transition should also be exercised when the particle moves 

from the micro-scale region back into a meso-scale domain; only here the transition is the 

reverse of what occurred earlier. This situation is shown schematically in Figure 5-4.   

  As mentioned earlier, a framework for multiple particles was explained using 

inherited classes and objects. In this framework, the objects of the derived classes can 

have attributes of either RBCs (both rigid and deformable), platelets (both rigid and 

deformable) and cancer cells or any other type of cells (both rigid and deformable).  The 

importance of having the ability to have this dual-personality is brought to light in this 

section. Initially, when particles are initialized as objects of the derived class, they 

possess both attributes of rigid-body and deformable models. However, only those 

attributes which are necessary in any particular region are utilized, while the other 

attributes are “masked”. For instance, if a particle is initialized in the meso-scale region, 

it will have only the rigid-body attributes activated, keeping the deformable model 

attributes masked. When the particle moves into the computational region which requires 

a deformable cell simulation, the attributes of the rigid-body models are masked and the 

deformable attributes are activated. However, the essential attributes such as position and 

orientation is preserved through the transition process. This is shown schematically in 

Figure 5-5. 

5.5 Accounting for Multiple Particle Interactions using 

IBM 

When simulating multiple particles, the presence of multiple particles needs to be 

communicated to the fluid. Moreover, the presence of multiple particles needs to be 

communicated to each other. The particles interact not only with the surrounding fluid, 
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but with surrounding particles as well. Thus the need arises for a framework which 

enables this multi-particle interaction.  

There have been multiple approaches used by researchers in the past. Some of the 

methods include distance-based interaction models [10,14] while others have used mass-

spring models [104]. However, multiple researchers have depended on IBM for sensing 

neighboring cells and interacting with them. IBM lends itself nicely to handling multiple 

particle interactions (no contact) because of its formulation. In IBM, the membrane force 

is distributed to the surrounding fluid points using a delta function, as shown in Figure 5-

6. When multiple particles come near each other, the fluid points which are recruited for 

supplying forces overlap between two or more particles. In such a case, the resulting flow 

field takes into account the contribution from all the particles at that point. It can be 

compared to performing a vector sum. Indeed, the force at any fluid point is a vector sum 

of all the forces from all the contributing particles. Figure 5-6 shows a schematic of two 

particles interacting with one another by sharing the same fluid points for force 

distribution. Thus IBM has an inherent basic particle interaction mechanism on account 

of its formulation. However the interaction mechanism does not, in theory, allow contact 

between particles because the forces increase in a repelling nature as particles come 

closer. The behavior of multiple particles can be compared to using an advanced form of 

lubrication theory. However as an initial interacting mechanism, IBM should suffice.  

5.6 Test Cases for Multiple Particles 

As discussed earlier in this chapter, the modular architecture of the developed 

framework combined with the choice of FSI technique enables simple implementation of 

multiple cells. As preliminary test cases we simulated the motion of both RBCs and 

spherical cells for basic flow conditions.  
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5.6.1 Two RBCs in Parabolic Flow 

As an initial case, we simulated the motion of two RBCs in capillary flow. The 

flow conditions were exactly the same as that used for testing and verifying the single 

RBC case (described in section 4.4.2). Briefly, the RBCs are placed at the center of the 

flow domain in a Poiseuille flow profile for Ca = 0.1. Both the RBCs are separated by a 

distance equal to one cell diameter. The stages of deformation of the RBCs are shown in 

Figure 5-7 and Figure 5-8. Figure 5-7 shows a 3D view of the restoring forces set up in 

the membrane on account of the deformation effected by the flow, and Figure 5-8 shows 

a cross-sectional view of both RBCs. It can be clearly seen that the RBCs achieve a 

steady state shape similar to that seen in Section 4.4.2 for the single RBC. Due to the 

flow velocity and the spacing between the two RBCs, neither RBC seems to be affected 

by the presence of the other. The RBCs were inserted as nodes in the aforementioned 

linked list architecture, and the FSI was performed using the same IBM technique 

described in this chapter and earlier, with the main different being the possible 

contributions by multiple solid points to the same surrounding fluid points. Also, both 

RBCs were simulated with an internal to external viscosity ratio of 5. 

5.6.2 Two Spheres Interacting in Linear Shear Flow 

For a more rigorous testing of multiple cells interacting with each other, two 

spheres were placed in a linear shear flow in such a way that they are convected towards 

each other. As shown in the schematic in Figure 5-9(a), the distances ∆x and ∆y can be 

varied. Different initial locations of the sphere were tested for multiple Ca. The spheres, 

like the RBCs in the earlier case were introduced as nodes in the linked list architecture 

with the main difference being the viscosity ratio between the internal and external fluids 

which was maintained at unity.  

Figure 5-9(b) shows the stages of interaction of the two spheres for Ca = 0.05. 

The two spheres were placed initially such that ∆x=2.5 and ∆y=1.0. Every screen shot in 
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Figure 5-9(b) shows the configuration of the two spheres at time intervals of non-

dimensional time dt* = 1000. The spheres initially deform according to the shear flow 

and also begin to travel towards each other. When the two spheres are close enough such 

that they begin to feel the presence of each other, the shapes of the spheres no longer 

remain symmetrical, but begin to show asymmetery, as though the spheres are trying to 

force themselves into one another. As the spheres get closer to each other, their centers of 

mass shift away from the centerline trajectory and the portion of the membrane facing the 

other sphere flattens. As the spheres continue on their trajectory, they begin to regain 

their curvatures and start to recover the shape that they had prior to interacting with one 

another.  

Figure 5-10 shows the stages of interaction of two spheres placed apart by the 

same distances, i.e. ∆x=2.5 and ∆y=1.0 but for a much higher Ca=0.15. As the Ca is three 

times that of the previous case, the spheres begin to interact with each other even before 

they have had the time to reach their steady state shapes in the shear flow. As a result, the 

spheres jump over one another, undergoing rotational motion as well as translational 

motion. Figure 5-11 shows the stages of deformation for the same Ca of 0.15 but with the 

spheres placed much farther apart, ∆x=3.5 and ∆y=0.5. Even though the separation along 

the y-direction is reduced, the increased separation in the x-direction allows the spheres 

enough time to achieve a steady motion prior to interacting with each other. As a result 

the spheres deviate from their original path similar to the earlier case for Ca=0.05, but by 

a different extent. Figure 5-12 quantifies the trajectory of the centers of the two spheres 

for the cases mentioned thus far. Also shown is the trajectory for a similar case of 

Ca=0.15 from the study by Lac et al [132]. It can be seen that the trajectory for the case 

of Ca=0.15 closely follows that of Lac et al until the trajectory reaches its highest point, 

following which the trajectory in the present study drops at a faster rate. This may be due 

to the variation in the starting positions for the two cases. In the case of Lac et al, the 

spheres started much farther away from each other in the x-direction. As a result, the 
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spheres would have possessed more time to reach a steady motion compared to the 

current study. This is only a preliminary simulation, and more testing is underway to 

investigate the interaction between two spheres in a shear flow.  

 5.7 Discussion and Summary 

In the current chapter, incorporating a framework to model multiple cells was 

discussed. Simulating micro-scale blood flow dynamics necessitates the ability to model 

multiple cells in a dynamic framework. Moreover, the framework should be able to 

smoothly incorporate multiple cells of different genres such as RBCs, WBCs and so on. 

In order to achieve the apropos, a linked list based architecture in conjunction with object 

oriented programming principles was implemented. A linked list enables dynamic 

inclusion of new nodes and deletion of existing nodes as and when necessary, making it a 

flexible architecture to work with. The inclusion of object oriented programming 

principles, viz. inheritance enables multiple cells of different genres to be modeled and 

simulated within the same architecture. The combination of linked lists and inheritance 

also provides the ability to scale the framework both in terms of number of cells and also 

in terms of physics of the problem. For example, the framework can be easily extended to 

include meso-scale models for blood particulates in addition to the current NURBS 

micro-scale models. The nodes of the linked lists would refer to an individual blood 

particulate which would contain attributes of both meso-scale and micro-scale models. 

The appropriate attribute would be switched on based on the type of computational 

domain being used. This would enable switching between the meso-scale and micro-scale 

models as the flow proceeds from a meso-scale computational domain where the 

particulates need not be highly resolved to a region where the deformability and 

dynamics of particulates at the micro-scale become needed, eg. the hinge region of a 

mechanical heart valve. Moreover, the choice of the IBM for FSI lends itself beautifully 

to the aforementioned framework as there does not explicitly exist a need to include the 
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presence of multiple particulates. The formulation of the IBM automatically incorporates 

contributions from multiple sources through the delta functions, thereby laying the 

foundation for a simple and straightforward implementation for simulating multiple 

particulates.  

The aforementioned linked list and object oriented programming architecture in 

conjunction with the IBM was implemented and tested for basic cases involving RBCs 

and spheres. Two RBCs were simulated in Poiseuille flow in a capillary, where the RBCs 

did not interact with each other due to the starting positions. Both RBCs achieved steady 

state shapes similar to that obtained in Section 4.4.2. In order to test the ability of the 

developed framework to deal with interacting particles, the interaction of two spheres in 

linear shear flow was simulated. The spheres were placed off-center such that they would 

be convected towards each other by the shear flow. Various Ca and initial placements 

were examined, and the trajectories of the center of the two spheres was tracked. The 

spheres were convected towards each other after achieving a steady deformation state of 

tank treading provided there was enough time for the spheres to reach steady state. As the 

spheres approached each other, they felt the presence of each other and deviated from 

their original paths based on the Ca and initial placements. Different dynamics were 

captured for different Ca and initial placements with NURBS meshes as coarse as 176 

elements for the sphere. There existed good agreement with published data for the case 

with Ca=0.15, however further testing needs to be performed for other capillary numbers 

and starting positions. To conclude, the linked list architecture in conjunction with object 

oriented programming provides a strong foundation for achieving simulations of large 

number of cells of multiple genres, with the cells being able to interact with one another 

on account of the immersed boundary fluid-structure interaction technique.  
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Figure 5-1: Combined framework depicting data structure for both meso-scale and micro-
scale particle with information derived from a common parent particle, but 
consisting of individual as well as common attributes. 
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Figure 5-2: Linked List architecture (a) Components of a Linked List node consisting of 
the data portion and the pointer to the next node in the linked list (b) 
Schematic of Linked List consisting 4 data nodes and 1 head node. The 
locations of the nodes of the LL need not be consecutive blocks of memory. 
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Figure 5-3: Schematic of Linked List Insertion and deletion (a) Linked List containing 
head and 2 nodes (b) Insertion of a node “3” after the head node (c) Insertion 
of a node “3” between nodes 1 and 2 depicting the dynamic insertion ability of 
the Linked List architecture (d) Deletion of node “1”, redirecting the pointer 
of the head node to point to the address of node 2 to maintain continuity. 

 

 

 

 



156 
 

 

 

 

 

 

 

 

Figure 5-4: Schematic depicting a typical computational domain to be simulated, 
including the meso-scale and the micro-scale regions. RBCS and other cells 
should smoothly transition from being modeled as a rigid body model in the 
meso-scale regions (left and right) to being modeled as deformable cells in the 
micro-scale region (center). 
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Figure 5-5: Different stages of a RBC and Cancer cell model existence. (a) Both meso-
scale (B) RBC micro, Cancer cell meso (c) Both Micro (d) RBC back to meso, 
cancer cell still micro (e) both meso. 
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Figure 5-6: 2-D Schematic showing overlap of force distribution contributed by 
neighboring particles. Some of the fluid points are recruited for both particles 
1 and 2, with the formation of an overlap zone where the vector sum of forces 
is calculated. Only the contributions from the fluid points inside the two 
spheres of influence shown contribute towards the boundary condition 
determination at the solid points. 
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Figure 5-7: 3-D Sequence of deformation of 2 RBCs initially placed at a fixed distance 
apart in a fully developed Poiseuille flow profile. The contours show the 
membrane force generated, and the black arrow denotes the direction of flow. 
The RBCs achieve a steady state shape (and membrane force) beyond which 
they are simply convected like rigid bodies. 
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Figure 5-8: Cross-sectional views of sequence of deformation of 2 RBCs initially placed 
at a fixed distance apart in a fully developed Poiseuille flow profile. The black 
arrows (top) denote the flow profile. The RBCs achieve a steady state shape 
beyond which they are simply convected like rigid bodies. 
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Figure 5-9: Behavior of two spheres approaching each other in linear shear flow (a) 
Schematic for simulating the interaction of two spheres in linear shear flow 
(b) stages of interaction and deformation of two identical spheres placed at a 
distance of ∆x=2.5 and ∆y=1.0 for Ca=0.1. The montage consists of snapshots 
of the positions of the spheres at equal intervals of time. The spheres approach 
each other, are deviated away from their original path due to the presence of 
the other sphere and undergo asymmetric deformation with the portion of the 
spheres facing each other flattening. The spheres regain their curvatures after 
they have passed each other. 
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Figure 5-10: Behavior of two spheres approaching each other in linear shear flow (a) 
Schematic for simulating the interaction of two spheres in linear shear flow 
(b) stages of interaction and deformation of two identical spheres placed at a 
distance of ∆x=2.5 and ∆y=1.0 for Ca=0.15. The montage consists of 
snapshots of the positions of the spheres at equal intervals of time. Due to the 
high Ca and the close proximity of the two spheres at the beginning, the 
spheres do not have enough time to achieve steady deformation shapes and 
hence jump over one another. 
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Figure 5-11: Behavior of two spheres approaching each other in linear shear flow  (a) 
Schematic for simulating the interaction of two spheres in linear shear flow 
(b) stages of interaction and deformation of two identical spheres placed at a 
distance of ∆x=3.5 and ∆y=0.5 for Ca=0.15. The montage consists of 
snapshots of the positions of the spheres at equal intervals of time. The 
spheres approach each other, are deviated away from their original path due to 
the presence of the other sphere and undergo asymmetric deformation with the 
portion of the spheres facing each other flattening. The spheres regain their 
curvatures after they have passed each other. 
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Figure 5-12: Plot of trajectory of the centers of the interacting spheres in linear shear 
flow. The x-axis depicts the difference in the x-locations of the two centers 
and the y-axis depicts the difference between the y-locations of the two 
centers. The center trajectories are shown for Ca = 0.025, Ca = 0.05 and Ca = 
0.15 with different initial positions. Also shown is the center trajectory from 
[132] for Ca=0.15 
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CHAPTER 6 

TOWARDS MODELING BLOOD FLOW: CONCLUSION AND 

FUTURE WORK  

6.1 Introduction 

The NURBS based isogoemetric analysis framework presented thus far was 

developed with a vision of performing simulations of ensembles of blood particulates in a 

novel and efficient manner. One of the many applications of this framework was to try 

and simulate the flow of cancer cells in the micro circulation to investigate cancer 

metastasis. Other potential applications directly relevant to the simulations performed so 

far are testing what happens to the circulatory behavior during disease states such as 

malaria or sickle cell anemia where the deformability of RBCs are altered. The linked list 

architecture enables inserting and deleting particulates from the computational domain 

and the immersed boundary method provides a simple yet effective means of 

communication between the solid and the fluid, even for multiple cells. This chapter 

summarizes the aforementioned capabilities and provides a perspective of the future work 

needed to achieve large scale simulations of blood particulates.  

6.2 Summary of Capabilities Developed in Current Work 

Recall the objectives of the current research from Chapter 1: 

OBJ-I. To develop and validate a modeling approach that efficiently captures the 

complexities of individual blood cell dynamics 

OBJ-II. To characterize the material properties of epithelial cancer cells in order to 

model ensembles of cancer cells along with blood cells 

OBJ-III. To implement a cost-effective framework that captures the interactions of 

multiple cells 

OBJ-IV. To determine how cancer cell properties impact their behavior in the 

circulation 
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6.2.1 OBJ-I: Developing a Modeling Approach to Capture 

Complexities of Individual Blood Cells 

Simulating physiologically realistic micro-scale blood flow is a yet-to-be realized 

dream of researchers due to the ironically large scale of the micro-scale problem. A 

single drop of human blood contains over a million RBCs, not to mention WBCs and 

platelets. This has fostered the development of multiple methods to simulate blood 

particulate flows. However many of the aforementioned methods rely on finite element 

models of individual cells which render the system extremely computationally intensive 

simply because of the large number of elements per cell. The current research approaches 

the modeling problem from the perspective of less is more, i.e. if it is possible to use 

fewer elements for an individual cell then it is possible to model large number of cells 

with the same computational resources. With this end in mind, the NURBS based 

isogeometric analysis framework was developed. NURBS enables the geometric 

modeling of blood particulates (RBCs, WBCs, etc.) using very few elements per cell 

while preserving the important geometric differences across the different particulate 

models. Moreover, the methodology used to create the geometric models provides the 

foundation for performing membrane mechanics analysis, thereby enabling the creation 

of a holistic geometric modeling and membrane mechanics analysis system. Using the 

NURBS isogoemetric analysis framework, models for the characteristic biconcave RBC, 

spherical WBC and spherical cancer cell were created using as few as 176 elements for 

the sphere and 440 elements for the RBC. Moreover, the development of this framework 

was modular thus enabling the use of different constitutive models to describe the 

membrane mechanics, making it a specialized and cell-type specific framework. The 

development of a modular architecture was necessary as the mechanical properties of 

RBCs vary vastly from WBCs which in turn vary greatly from other cells in the 

circulation viz. platelets and cancer cells. The behavior of blood at the macro-scale is a 

manifestation of the characteristic behaviors of the different individual particulates at the 
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micro-scale, and the framework developed in this research attempts to maintain that 

equality with nature.  

While geometrically accurate models have been developed and validated for 

RBCs and spherical cells, there are a few areas which can be improved. The current 

method used to interpolate the boundary conditions on the surface of the NURBS cell is a 

simple least squares approach. This can be improved with more accurate approaches to 

specify the boundary conditions [59]. Also, the current geometric models can be 

improved by testing new/updated models with improved surface knot placement to better 

distribute the surface mesh. The current models have a convergent pole in the center 

which is an impediment to the implementation of some fluid-structure interaction 

methodologies and also results in highly skewed meshes. Better geometric models can be 

developed which obviate the need of a convergent pole, thereby achieving a uniform 

mesh distribution over the surface of the NURBS model. The current NURBS model for 

blood cells is constructed with the use of a single NURBS patch, i.e. a single NURBS 

sheet which is bent and deformed to achieve the curvatures of the models created. Multi-

patch models can also be created which could potentially remove the problems with both 

the convergent pole and uneven, skewed meshes. Alternately, the NURBS models can be 

used as a stepping stone to develop models using T-Splines [133] which enable the 

development of any model with an unstructured mesh having T-junctions. This could 

provide a way to possibly increase mesh density on the fly based on conditions like 

complex fluid structures, increased contact between surrounding cells, etc. The 

constitutive model used to describe the membrane mechanics can be improved with the 

use of new, advanced models which bring in an element of biochemistry along with pure 

mechanics [36].   
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6.2.2 OBJ-II: Characterization of material properties of 

epithelial cancer cells 

Cancer is one of the world’s deadliest diseases as it spreads through the human 

body beyond the primary stage, which makes it extremely difficult and almost impossible 

to combat it. This metastasizing of cancer has been a focus of researchers for years 

[4,134] but it is only in the past decade that work has increased on examining the 

mechanical properties of metastasizing cancer cells [83,135,136] to gain further insights 

into the physics of cancer. Like any other biological problem, the current work 

approaches this problem from both experimental and computational perspectives. The 

experimental approach was necessary in order to characterize the mechanical properties 

of cancer cells in the suspension and more importantly, analyzing the response of cancer 

cells when subjected to fluid shear stresses. This is pertinent to the metastasizing of 

cancer cells where they use the circulation to travel to secondary sites. Moreover, they are 

known to suffer from metastatic inefficiency, i.e. not all the cancer cells that enter the 

circulation survive [4]. Most of the studies undertaken thus far on determining 

mechanical properties of cancer cells were conducted on cancer cells in an adherent state 

using atomic force microscopy. However, in order to determine the behavior of cancer 

cells in circulation, the mechanical properties were needed to be obtained when the 

cancer cell was suspended in fluid, and not in an adhered state. Hence it was decided to 

undertake a secondary project to determine the mechanical properties of cancer cells in 

suspension using a micropipette aspiration technique. This also enabled the investigation 

of the effects of fluid shear on cancer cells. Using the micropipette aspiration technique, 

material properties of cancer cells were characterized. More importantly, the cancer cells 

were found to adapt to fluid shear and showed a graded or acquired response to the levels 

of fluid shear for the range of shear stress tested. Previous work [87] had determined that 

the viability of cancer cells showed a biphasic response to increasing exposure to fluid 

shear stress. The shear protocol involved passing the suspension of cancer cells 10 times 
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through a syringe pump. While a large number of cancer cells died in the initial 2-3 

passes, the survival rates asymptoted off at around 50% between the 4
th

 and the 10
th

 

passage, indicating adaptation of cancer cells. Our experiments on the material properties 

of cancer cells showed that the elastic modulus of cancer cells increased by ~80% after 

exposure to high shear as compared to a rest state in suspension. This increased elastic 

modulus was also found to be present at lower rates of shear, but the response was graded 

to the shear levels. Interestingly, the acquired response of stiffening was limited to 

transformed cells only; non-transformed cells did not show any significant change in their 

elastic modulus prior to and after exposure to fluid shear.  

The experiments enabled initial characterization of mechanical properties of 

cancer cells both at rest and after exposure to fluid shear stress. Our study was the first to 

use micropipette aspiration in conjunction with fluid shear studies to examine the effects 

of mechanical stimuli on cancer cells in suspension. However, characterizing the elastic 

modulus is only the first step towards understanding the mechanics of cancer cells. The 

logical next step would be to examine the visco-elastic properties of the cancer cells 

tested thus far. This would involve upgrading the experimental setup to include a better 

camera and improved suction apparatus to apply increasing suction pressures in a smooth 

manner. There are many mechanical models that have been used to characterize the 

properties and behavior of living cells [72], and using an improved model than the one 

currently employed may shed more light on the mechanics. The use of improved models 

to experimentally investigate the behavior of cancer cells would translate to the use of 

improved models for computations. At present the cancer cell was modeled in our 

preliminary simulations as a membrane encapsulated capsule using an equivalent cortical 

tension obtained from the elastic modulus [69]. Advanced experiments would lead to the 

use of improved constitutive models in computations which would, in turn, shed more 

light on the physics of cancer metastasis.  
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6.2.3 OBJ-III: Implementation of a framework to model 

and capture the interactions of multiple cells 

The simulation of a blood cell (eg.RBC) in flow is a fluid-structure interaction 

problem where the structure (the RBC) is influenced by the flow of the surrounding fluid; 

and in turn influences the surrounding fluid on account of restoring forces set up in the 

membrane due to deformation. Since the underlying fluid flow solver was a Cartesian 

solver, it was decided to use the IBM to communicate between the structure and the fluid. 

The main advantage of the IBM was that it would enable efficient communication 

between the fluid and the structure and that the principles of the method stay the same for 

multiple cells. This made the task of implementing architecture to model both single and 

multiple cells efficient and without added complexity for modeling multiple cells.   

As mentioned earlier, achieving physiologically realistic simulations of blood 

flow is a large scale problem due to the particulate nature of blood and the extremely 

large number of blood cells even in a small (mL) volume of blood. In order to progress 

towards achieving simulations of large ensembles of blood cells, an efficient 

computational architecture is required. The architecture has to be efficient, dynamic and 

scalable in terms of number of cells and in terms of parallelization. For the purposes of 

this research, a linked-list based computational architecture was implemented as it 

fulfilled the above criteria of being dynamic, scalable and very computationally efficient. 

One of the many advantages of the linked list is that it is capable of dynamically 

allocating memory based on the distribution of computational resources unlike an array-

based architecture which is not dynamic and needs a continuous chunk of memory. 

Moreover, the linked list architecture can handle the insertion of new cells in the 

computational domain and deletion of old cells from the computational domain as 

required. Most importantly, the linked list architecture was implemented in order to 

communicate with various models of meso and micro-scale in the future, where it is 

envisioned that a cell (eg.RBC) would pass through computational domains of meso-
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scale resolution where only the general particle dynamics are required, into a region of 

micro-scale resolution where the cell would need to be resolved completely using the 

NURBS based isogeometric analysis method. This would enable efficient computations 

to be performed across dynamic scenarios such as a mechanical heart valve, in the region 

of a stent-graft, atherosclerosis, etc.  

While the IBM for communication between the fluid and the solid is a good first 

step, it does not work very efficiently for unstructured meshes. One of the biggest 

advantages of using NURBS is the ability to use very few elements for a single cell. This 

results in meshes that are quite coarse and uneven mesh distribution over the NURBS 

model. The models created in the current research have a convergent pole at the center 

and highly skewed quad meshes closer to the pole. This presents a challenge for IBM as 

it results in over estimation or under estimation of the membrane force being 

communicated to the fluid in regions of high and low mesh density, respectively.  In 

addition, the use of coarse meshes for the NURBS models mandate the use of very coarse 

meshes for the fluid domain on account of the formulation of IBM. This presents 

challenges especially when attempting to simulate the flow of cells in tubes having 

comparable of lesser diameter than the cells due to the lack of a sufficiently fine fluid 

mesh. More importantly, IBM does not allow for physical contact between two cells. In 

actuality however, the blood cells (RBCs, WBCs, platelets, etc.) experience a large 

number of collisions as they traverse through the circulation. In order to model and 

replicate the colliding nature of blood cells, a contact model has to be implemented. This 

was also one of the motivations for developing the NURBS based analysis method, as 

NURBS provides a platform for very efficient contact algorithms [45,47,137]. The ability 

of NURBS models to replicate the geometry and dynamics of tortuous cells with very 

few elements enables the contact algorithms to be very quick in searching for areas of 

contact between cells. The use of contact algorithms would necessitate the need to 
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implement other fluid-structure interaction algorithms in order to completely exploit the 

advantages presented by NURBS based isogeometric analysis. 

6.3 Conclusion 

 In summary, the contributions of the current work presented in this dissertation 

are: 

1. A novel NURBS-based isogeometric modeling and analysis procedure has 

been developed and implemented to model blood cells (RBCs, WBCs, 

platelets and cancer cells) in the micro circulation. The use of NURBS 

enables highly coarse meshes while preserving the important geometric 

features characteristic to different cells like the biconcavity of RBC, 

resulting in the creation of NURBS models describing the shape of the 

RBCs using as few as 84 elements.  

2. A modular architecture has been utilized in the development of the 

aforementioned NURBS based architecture to enable the use of different 

constitutive models for different cell types, each with their own 

characteristics.  

3. The mechanical properties of epithelial cancer cells have been 

characterized with a view to computationally model the behavior of cancer 

cells in the circulation during cancer metastasis. The micropipette 

aspiration technique was used to determine the elastic modulus of cancer 

cells at rest and after exposure to fluid shear stress. It was found that 

cancer cells adapted to fluid shear by stiffening themselves, and that this 

response was graded based on the levels of fluid shear. Moreover, this 

adaptation was not seen in non-transformed cells after exposure to fluid 

shear.  
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4. Fluid-structure interaction modeling was achieved through the 

implementation of the Immersed Boundary Method in conjunction with an 

in-house developed Cartesian grid fluid flow solver. The interaction 

method enabled simple and efficient implementation of communication 

between the solid and the surrounding fluid for both single and multiple 

cells without any additional complexity for multiple cells due to its 

formulation.  

5. A linked-list based architecture was implemented to enable the simulation 

of multiple cells in a dynamic environment. The architecture was 

implemented using Object Oriented Programming principles which 

enables the inheritance of properties across various levels of hierarchy of 

blood cells. The linked list architecture also enables efficient use of 

computational resources while providing a dynamic and scalable platform 

to model multiple cells of various genres. 

6. The NURBS models developed in this research were validated against 

canonical flow situations like shear flows and parabolic flow using very 

few NURBS elements to describe the RBC and spherical models. A 

parameteric study was also conducted to investigate the effect of different 

membrane constitutive relationships on the behavior of flowing cells. 

Preliminary simulations were also performed for cancer cells in flow using 

material properties derived from the micropipette aspiration experiments.  

A schematic of the capabilities developed and implemented in this research is 

shown in Figure 6-1. 
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Figure 6-1: Schematic of contribution of various modules presented in this work and their 
contribution towards development of a 3-D particle dynamics framework for 
blood flow analysis 
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