
University of Iowa
Iowa Research Online

Theses and Dissertations

Spring 2015

New neural network for real-time human dynamic
motion prediction
Mohammad Hindi Bataineh
University of Iowa

Copyright 2015 Mohammad Hindi Bataineh

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/1543

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation
Bataineh, Mohammad Hindi. "New neural network for real-time human dynamic motion prediction." PhD (Doctor of Philosophy)
thesis, University of Iowa, 2015.
http://ir.uiowa.edu/etd/1543.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=ir.uiowa.edu%2Fetd%2F1543&utm_medium=PDF&utm_campaign=PDFCoverPages

NEW NEURAL NETWORK FOR REAL-TIME HUMAN DYNAMIC MOTION

PREDICTION

by

Mohammad Hindi Bataineh

A thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Biomedical Engineering
in the Graduate College of

The University of Iowa

May 2015

Thesis Supervisors: Professor Karim Abdel-Malek
 Adjunct Associate Professor Timothy Marler

Copyright by

MOHAMMAD HINDI BATAINEH

2015

All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Mohammad Hindi Bataineh

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Philosophy
degree in Biomedical Engineering at the May 2015 graduation.

Thesis Committee: ___________________________________
 Karim Abdel-Malek, Thesis Supervisor

 Timothy Marler, Thesis Supervisor

 Jasbir Arora

 Nick Street

 Salam Rahmatalla

 Thomas Schnell

To Yasmeen, Alma, my family, and friends

 ii

Life is not about finding yourself. Life is about creating yourself

 George Bernard Shaw

 iii

ACKNOWLEDGMENTS

I would like to thank my research advisor, Dr. Timothy Marler, for his endless

directions and contributions to present my ideas fruitfully and clearly. I am especially

grateful to my academic advisor and mentor, Professor Karim Abdel-Malek for his

enthusiastic support and directions to work on exciting and appropriate topics. In addition,

I would like to thank my other thesis committee members for their time and valuable

feedback. I would also like to thank Melanie Laverman for the help in editing my thesis

chapters, and all the group at the Virtual Soldier Research program for their efforts. Finally,

above all, I am grateful to the God (firstly and lastly) and to my family for their endless

smiles, confidence, and support though the past five years of my life.

 iv

ABSTRACT

Artificial neural networks (ANNs) have been used successfully in various practical

problems. Though extensive improvements on different types of ANNs have been made to

improve their performance, each ANN design still experiences its own limitations. The

existing digital human models are mature enough to provide accurate and useful results for

different tasks and scenarios under various conditions. There is, however, a critical need

for these models to run in real time, especially those with large-scale problems like motion

prediction which can be computationally demanding. For even small changes to the task

conditions, the motion simulation needs to run for a relatively long time (minutes to tens

of minutes). Thus, there can be a limited number of training cases due to the computational

time and cost associated with collecting training data. In addition, the motion problem is

relatively large with respect to the number of outputs, where there are hundreds of outputs

(between 500-700 outputs) to predict for a single problem. Therefore, the aforementioned

necessities in motion problems lead to the use of tools like the ANN in this work.

This work introduces new algorithms for the design of the radial-basis network

(RBN) for problems with minimal available training data. The new RBN design

incorporates new training stages with approaches to facilitate proper setting of necessary

network parameters. The use of training algorithms with minimal heuristics allows the new

RBN design to produce results with quality that none of the competing methods have

achieved. The new RBN design, called Opt_RBN, is tested on experimental and practical

problems, and the results outperform those produced from standard regression and ANN

models. In general, the Opt_RBN shows stable and robust performance for a given set of

training cases.

 v

When the Opt_RBN is applied on the large-scale motion prediction application, the

network experiences a CPU memory issue when performing the optimization step in the

training process. Therefore, new algorithms are introduced to modify some steps of the

new Opt_RBN training process to address the memory issue. The modified steps should

only be used for large-scale applications similar to the motion problem. The new RBN

design proposes an ANN that is capable of improved learning without needing more

training data. Although the new design is driven by its use with motion prediction

problems, the consequent ANN design can be used with a broad range of large-scale

problems in various engineering and industrial fields that experience delay issues when

running computational tools that require a massive number of procedures and a great deal

of CPU memory.

The results of evaluating the modified Opt_RBN design on two motion problems

are promising, with relatively small errors obtained when predicting approximately 500-

700 outputs. In addition, new methods for constraint implementation within the new RBN

design are introduced. Moreover, the new RBN design and its associated parameters are

used as a tool for simulated task analysis. This work initiates the idea that output weights

(𝑾𝑾) can be used to determine the most critical basis functions that cause the greatest

reduction in the network test error. Then, the critical basis functions can specify the most

significant training cases that are responsible for the proper performance achieved by the

network. The inputs with the most change in value can be extracted from the basis function

centers (𝑼𝑼) in order to determine the dominant inputs. The outputs with the most change

in value and their corresponding key body degrees-of-freedom for a motion task can also

be specified using the training cases that are used to create the network’s basis functions.

 vi

PUBLIC ABSTRACT

Research in the field of human simulation has led to significant advancement in

quality, time, and cost management for products like military and athletic equipment and

vehicles. There is, however, a critical need for human simulation models to run in real time,

especially those with large-scale problems like motion prediction (a single motion problem

involves prediction of between 500-700 outputs). Hence, this thesis addresses that need by

developing a new design of artificial neural network (ANN) that is capable of providing

real-time motion results with maximum accuracy and minimal training. The success of the

new ANN design is proven for the intended problem of motion simulation and other

experimental and real-world problems. In addition, the design creates a new tool for the

analysis of the task being simulated. The new implemented ANN algorithms will open a

new area of advancement and capability in the digital human modeling field. Although the

new ANN design is driven by its use with motion prediction problems, the consequent

ANN design can be used with a broad range of large-scale problems. The motion problem

is simply a well-studied example problem for the proposed developments. The new ANN

design can be populated to be used for applications in various large-scale engineering and

industrial fields that experience delay issues when running computational tools that require

a massive number of procedures and a great deal of CPU memory.

 vii

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS ..xv

LIST OF SYMBOLS ... xvi

CHAPTER I. INTRODUCTION ...1

1.1. Artificial neural network background ..4
1.1.1. Biological analogy ..5
1.1.2. Artificial neural network as a data mining tool7
1.1.3. Regression with artificial neural networks10

1.2. Literature review ..11
1.2.1. Techniques in artificial neural network design12

1.2.1.1 Ensemble ..15
1.2.1.2 Knowledge-based neural network ..16
1.2.1.3 Extreme learning machine ..17

1.2.2. Large-scale applications ..19
1.2.3. Constrained problems..21
1.2.4. Dynamics and human simulations ..23

1.3. Summary of literature review and motivation28
1.4. Hypothesis and research objectives ..33
1.5. Overview of the Thesis ..35

CHAPTER II. RADIAL-BASIS NETWORK (RBN) – BACKGROUND AND
ANALYSIS ..37

2.1. Radial-basis network (RBN) architecture ..38
2.2. Training techniques in radial-basis network (RBN)46

2.2.1. Fast training method ..46
2.2.2. Full-training method ...49
2.2.3. Network generalization ...50
2.2.4. Techniques for setting network parameters55

2.2.4.1 Basis functions centers ...55
2.2.4.2 Basis function spreads ..57

2.3. Discussion ..59

 viii

CHAPTER III. NEW DESIGN FOR RADIAL-BASIS NETWORK WITH
REDUCED TRAINING SETS ..62

3.1. Introduction ..62
3.2. Method ...64

3.2.1. Normalizing the input ..66
3.2.2. Setting the basis functions spreads ..68
3.2.3. Selection of basis function centers ..71
3.2.4. Optimizing network parameters ..81

3.3. Results..86
3.3.1. Experimental regression problems ..86

3.3.1.1 Example 1 ...87
3.3.1.2 Example 2 ...90
3.3.1.3 Example 3 ...92
3.3.1.4 Example 4 ...94

3.3.2. Practical (real-world) regression problems97
3.4. Discussion ..102

CHAPTER IV. NEW DESIGN FOR PREDICTION OF LARGE-SCALE
HUMAN DYNAMIC MOTION APPLICATIONS 105

4.1. Introduction ... 105
4.2. Background: Predictive dynamic (PD) ... 107
4.3. Method .. 110

4.3.1. Training process for large-scale problem with reduced
training set ...113

4.3.1.1 New approach for setting of basis function spreads 114
4.3.1.2 New grouped optimization of network output weights 117

4.3.2. Performance analysis for over-fitting issues118
4.4. Results... 123

4.4.1. Walking forward task ..124
4.4.2. Going-prone task ...128
4.4.3. Sensitivity analysis ..132

4.5. Discussion ... 135

CHAPTER V. NEW APPROACHES FOR CONSTRAINT IMPLEMENTATION ...139

5.1. Introduction ..139
5.2. Background: predictive dynamic (PD) constraints142
5.3. Method ...144

5.3.1. Constrained network design (CND) ..144
5.3.2. Locally adaptive network outputs (LANO)146

5.4. Results..150
5.4.1. Jumping-on-the-box task ...150
5.4.2. Walking task ..153

5.4.2.1 Modified locally adaptive network output(s)
(modified-LANO) ..154

 ix

5.4.2.2 Network output(s) as initial guess (NOIG)155
5.4.2.3 Methods comparison ..156

5.5. Discussion ..162

CHAPTER VI. ARTIFICIAL NEURAL NETWORK AS A TOOL FOR
SIMULATION ANALYSIS ... 167

6.1. Introduction ... 167
6.2. Method .. 168

6.2.1. Interpretation of neural network parameters 168
6.2.1.1 Basis function and its parameters 169

6.2.1.1.1 Basis function centers (𝑼𝑼) 171
6.2.1.1.2 Basis function spreads (𝝈𝝈)....................................... 171

6.2.1.2 Output weights (𝑾𝑾) ... 174
6.2.2. Task inputs .. 176
6.2.3. Task outputs .. 178

6.3. Results... 180
6.3.1. Example 1: walking task .. 181
6.3.2. Example 2: going-prone task .. 187

6.4. Discussion ... 192

CHAPTER VII. DISCUSSION…………….. ...196

7.1. Summary ... 196
7.2. Conclusion .. 201
7.3. Future work ... 208

BIBLIOGRAPHY ... 214

APPENDIX A. TABLES OF TRAINING CASES FOR THE PROBLEM OF
MULTI-SCALE HUMAN MODELING FOR INJURY
PREVENTION .. 226

APPENDIX B. TABLES OF NETWORK PARAMETERS VALUES FOR
SIMULATED PREDICTIVE DYNAMIC TASKS228

 x

LIST OF TABLES

Table 3.1: Test error produced from the four regression models, Linear, FFN, RBN,
and Opt_RBN, for simulation example 1. ..88

Table 3.2: Test error produced from the four regression models, Linear, FFN, RBN,
and Opt_RBN, for simulation example 2. ..91

Table 3.3: Test error produced from the four regression models, Linear, FFN, RBN,
and Opt_RBN, for simulation example 3. ..93

Table 3.4: Test error produced from the four regression models, Linear, FFN, RBN,
and Opt_RBN, for simulation example 4. ..95

Table 5.1. Comparison results for the method of locally adaptive network outputs
(LANO) and its derivatives when applied on five test cases in a predictive
dynamic (PD) walking task...157

Table 5.2. Zero moment point (ZMP) constraint violations (averaged values for five
test cases) produced from the modified locally adaptive network outputs
(LANO) methods applied in predictive dynamic (PD) walking task.160

Table 5.3. Detailed zero moment point (ZMP) constraint violations produced from
the modified locally adaptive network outputs (LANO) methods applied on
five test cases in predictive dynamic (PD) walking task. Each test case
represents a combination of loading and ROM conditions.....................................161

Table 6.1: The three most critical basis functions for the network prediction error in
the walking task, and description of the corresponding training cases. 182

Table 6.2: The three inputs with the most change in value in the walking task. 184

Table 6.3: The three degrees of freedom (DOFs) with the most change in value in
the walking task. .. 185

Table 6.4: The three degrees of freedom (DOFs) with the least change in value in
the walking task. .. 186

Table 6.5: The three most critical basis functions for the network prediction error in
the going-prone task, and description of the corresponding training cases. 188

Table 6.6: The three inputs with the most change in value in the going-prone task. 190

Table 6.7: The three degrees of freedom (DOFs) with the most change in value in
the going-prone task... 191

 xi

Table A.1: All 25 training cases and 3 test cases for the problem of predicting the
knee forces in the multi-scale human modeling system (walking task). 226

Table A.2: All 25 training cases and 3 test cases for the problem of predicting the
knee forces in the multi-scale human modeling system (stairs ascent task). 227

Table B.1: The network basis functions, basis function spread (𝝈𝝈) values, and their
corresponding original training cases for the walking task. 228

Table B.2: The network basis functions, basis function spread (𝝈𝝈) values, and their
corresponding original training cases for the go-prone task. 230

Table B.3: The full-body DOFs and their change in value (∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑) in the walking
task. .. 231

Table B.4: The full-body DOFs and their change in value (∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑) in the go-prone
task. .. 232

 xii

LIST OF FIGURES

Figure 1.1: Schemes for human brain neuron and an artificial neural network
(ANN). ..6

Figure 2.1: Schematic of the radial-basis neural network (RBN).39

Figure 2.2: Two-dimensional plot and contours for the Gaussian function type of
radial basis function. ...41

Figure 2.3: Portion of network radial-basis functions curves in two-dimensional
feature space (𝑥𝑥1 and 𝑥𝑥2 are the inputs). ..42

Figure 2.4: Portion of neural network corresponding to the nth output within multi-
outputs radial-basis network (RBN). ..43

Figure 2.5: RBN output curve resulting from multiple Gaussian functions.44

Figure 2.6: Example for fitting training data using three curves that represent cases
of a) under-fitting, b) optimal fitting, and c) over-fitting. ..51

Figure 2.7: Three Gaussian functions, where the red-colored one has larger width 𝜎𝜎
than the other two functions..58

Figure 3.1: Flow chart for the steps of the new training process of the RBN design.65

Figure 3.2: Two-dimensional plot for the root mean square distance (RMSD)
between two neighboring basis functions. ..70

Figure 3.3: Model complexity vs. error in terms of its variance and bias.82

Figure 3.4: Test set RMSE plots for RBN and Opt_RBN at various numbers of
training cases for simulation example 1. ..89

Figure 3.5: Test set RMSE plots for RBN and Opt_RBN at various numbers of
training cases for simulation example 2. ..91

Figure 3.6: Test set RMSE plots for RBN and Opt_RBN at various numbers of
training cases for simulation example 3. ..94

Figure 3.7: Test set RMSE plots for RBN and Opt_RBN at various numbers of
training cases for simulation example 4. ..96

Figure 3.8: Illustrative diagram for the linked software and models that form the
multi-scale predictive human modeling for injury prevention.98

Figure 3.9: Test set RMSE and MAE for RBN and Opt_RBN at various numbers of
training cases for predicting the knee stresses and forces for the walking task.100

 xiii

Figure 3.10: Test set RMSE and MAE for RBN and Opt_RBN at various numbers
of training cases for predicting the knee stresses and forces in the stairs-ascent
task. ...101

Figure 4.1: B-spline for six control points (i.e., joint angle profiles) at six time
frames of a total task time. ... 109

Figure 4.2: ANN diagram for general predictive dynamic (PD) applications. 112

Figure 4.3: Test RMSE versus the weight value of the regularization function in
simulation Example 1. ... 122

Figure 4.4: Test RMSE versus the weight value of the regularization function in
simulation Example 2. ... 123

Figure 4.5: Selected key frames for walking task simulation results of test cases 1-5
using the modified Opt_RBN. ... 127

Figure 4.6: Selected key frames for going-prone task simulation results of test cases
1-5 using the modified Opt_RBN. ... 131

Figure 4.7: Test set RMSE evaluation for the modified Opt_RBN and a typical
RBN design at various numbers of training cases. .. 133

Figure 5.1: Example of ANN-predicted motion for the jump-on-box task with
violated contact constraints. ..140

Figure 5.2: The new RBN design training process with a modified optimization
step to produce a constrained network design (CND). ...145

Figure 5.3: Flow chart for the steps of satisfying the violated constraints using the
method of locally adaptive network outputs (LANO). ...147

Figure 5.4: Results comparison for the motion produced from predictive dynamics
(PD), the new RBN design “ANN,” and the new RBN design with the locally
adaptive network outputs (LANO) constraint satisfaction method “ANN-
LANO” for test case 1 (height equal 60 cm) in the jumping-on-the-box task........151

Figure 5.5: Results comparison for the motion produced from predictive dynamics
(PD), the new RBN design “ANN,” and the new RBN design with the locally
adaptive network outputs (LANO) constraints satisfaction method “ANN-
LANO” for test case 2 (height equal 85 cm) in the jumping-on-the-box task........153

 xiv

LIST OF ABBREVIATIONS

ANN Artificial neural network

DHM Digital human model

RBN Radial-basis network

DOFs Degrees of freedoms

PD Predictive dynamic

FFN Feed-forward network

SVM Support vector machine

GRN General Regression neural network

KBNN Knowledge-based neural network

ELM Extreme learning machine

ROM Range of motion

SSE Sum-squared error

MOO Multi-objective optimization

OLS Orthogonal least square

RMSD Root-mean square distance

MSE Mean square error

Opt_RBN The new proposed optimized radial-basis network

RMSE Root mean square error

MAE Mean absolute error

CND Constrained network design

LANO Locally adaptive network outputs

NOIG Network output as initial guess

IG Initial guess

ZMP Zero moment point

 xv

LIST OF SYMBOLS

𝒙𝒙 I-dimensional input vector (𝒙𝒙 ∈ 𝑅𝑅𝐼𝐼)

𝒚𝒚 N-dimensional network output vector (𝒚𝒚 ∈ 𝑅𝑅𝑁𝑁)

ℎ𝑞𝑞 The qth basis-function output

𝒉𝒉 Vector of the outputs from Q basis-functions

𝒘𝒘𝑛𝑛 Vector of weighting factors for the nth network output

𝑾𝑾 Output weights matrix

𝑟𝑟𝑞𝑞 The squared Euclidean distance for 𝒙𝒙 from the qth neuron’s center

𝒖𝒖𝑞𝑞 The qth basis-function center

𝑼𝑼 The basis-function centers

𝑦𝑦𝑛𝑛 The nth network output

𝜎𝜎𝑞𝑞 Spread (or Gaussian width) of the qth basis-function

𝝈𝝈 The basis-function spreads

Q The number of basis-functions in the network

M The number of training cases

𝒕𝒕 True output matrix

𝑡𝑡𝑚𝑚 The true output value for the mth training case

𝑥𝑥𝑖𝑖𝑚𝑚 The ith component of the input in the mth training case

𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 The maximum absolute value of the ith component in the input vector

𝑥̅𝑥𝑖𝑖𝑚𝑚 Standardized value of the ith component of the input in the mth training
case

σ𝑗𝑗° Preliminary spread value of the jth basis-function

𝑯𝑯 Basis-functions’ outputs matrix

𝒁𝒁 Set of orthogonal basis vectors (orthogonal matrix)

𝒛𝒛𝑖𝑖 The ith orthogonal column in the orthogonal matrix

𝑨𝑨 Upper triangular matrix

𝒆𝒆 Error matrix

 xvi

http://en.wikipedia.org/wiki/Upper_triangular_matrix

𝒈𝒈 Least square solution vector (scores of the all training case)

𝑔𝑔𝑖𝑖 Least square solution of the ith training case (score of the ith training case)

[𝑒𝑒𝑒𝑒𝑒𝑒]𝑖𝑖 Error reduction ratio

𝜀𝜀 The tolerance value

𝜀𝜀1 The tolerance for error reduction ratio

𝜀𝜀2 The tolerance for the 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 in the current iteration

𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 Mean-square error at the current kth iteration

𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘−1 Mean-square error at the previous iteration

𝑾𝑾𝑜𝑜 The network’s preliminary outputs weight matrix

𝛼𝛼𝑗𝑗𝑗𝑗𝑖𝑖 The kth element in the jth row in the matrix A

𝑀𝑀𝑠𝑠 The number of selected significant number of basis-functions

𝑥𝑥1 The first input (variable) in the mathematical simulation example

𝑥𝑥2 The second input (variable) in the mathematical simulation example

𝑦𝑦1 The first output in the mathematical simulation equation

𝑦𝑦2 The second output in the mathematical simulation equation

𝑦𝑦3 The third output in the mathematical simulation equation

𝒒𝒒 Design variables (joint profiles)

𝒒𝒒𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 Joint profiles provided by motion capture system

𝒒𝒒𝑁𝑁𝑁𝑁 Joint profiles (outputs) produced by the neural network

𝑓𝑓(𝒒𝒒) Human performance measure

G The number of optimization problems to be solved (the number of
degrees-of-freedom)

𝑾𝑾𝑔𝑔 The connection weight matrix that corresponds to the gth group of outputs

𝒘𝒘𝑔𝑔,𝑑𝑑 The output connection weight vector that corresponds to the dth output in
the gth group of optimization

D The number of outputs in each gth group

𝜆𝜆𝑖𝑖 Weighting factor for the ith cost function in multi-objective optimization

𝑓𝑓𝑖𝑖(𝒙𝒙) The ith cost function in multi-objective optimization

 xvii

 𝑓𝑓𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚(𝒙𝒙) The maximum value of the ith cost function in multi-objective
optimization

𝑓𝑓𝑖𝑖𝑁𝑁(𝒙𝒙) The normalized ith cost function in multi-objective optimization

𝑓𝑓(𝑾𝑾) Cost function

Φ(𝑾𝑾, 𝑟𝑟) Composite function

𝑟𝑟 Scalar penalty parameter (𝑟𝑟 > 0)

𝑃𝑃(𝒉𝒉(𝑾𝑾), 𝑟𝑟) Penalty function

𝒉𝒉(𝑾𝑾) Set of constraints

ℎ𝑖𝑖+(𝑾𝑾) Maximum constraints violation

𝑥𝑥𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 The calculated range for the ith input in the neural network

∆𝑦𝑦𝑛𝑛 The change in value for the nth output in the network

∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 The change in value for a DOF (group of network outputs)

 xviii

CHAPTER I

INTRODUCTION

Artificial neural networks (ANNs) have been used successfully in various practical

problems. Fundamentally, ANNs provide a means of modeling large sets of data.

Conceptually, they provide a computational representation of how one takes in and

processes data—of how one learns. Though extensive improvements in different types of

ANNs have been made to improve their performance, each ANN design still experiences

its own limitations. As with learning in general, there are many facets to neural networks.

There are many ingredients, so to speak. Often, the challenge is not simply in applying a

network to a particular problem, but in determining the most appropriate components for

a particular problem in order to maximize computational speed and accuracy. In keeping

with the analogy of mimicking cognitive performance, there is a distinct need for an

ANN with improved performance, and responding to this need yields a tool with potential

application to a broad range of problems like those in digital human modeling.

The existing digital human models (DHMs) are mature enough to provide

accurate and useful results for different tasks and scenarios under various conditions.

There is, however, a critical need for these models to run in real time, especially those

with large-scale problems like motion prediction. Predicting motion problems can be

computationally demanding. It takes time (minutes to hours) to predict a single task, even

with small changes in the task conditions. Furthermore, simulations can be sensitive to

changes in task parameters that extend beyond anticipated bounds. This in turn presents a

case where accumulating a large amount of data (training cases from which to learn) can

1

be difficult. Hence, this work addresses that need using a new radial-basis network

(RBN) design that is capable not only of providing highly accurate real-time motion

results, but of providing them with minimal training.

The RBN is a powerful type of ANN to be investigated for predicting highly

complicated problems like DHM motion. The RBN has been selected in this work

because of its advantages when predicting regression problems, which will be discussed

later, and its fast and successful training process, especially in large-scale applications.

The RBN design, however, has some limitations. Therefore, this work presents a new

RBN design for real-time prediction of large-scale motion problems with improved

performance. Unlike traditional ANN designs, the new design’s performance is preserved

even with a reduced number of training cases. The design incorporates multiple training

stages with approaches to facilitate automatic selection of the necessary network

parameters in the training process with minimal heuristics. Along with the successful

implementation of the new RBN design, methods for constraint implementation within

the new design are also provided in this work. In addition, the design is used as a novel

tool to perform biomechanical analysis for the simulated DHM problems.

The field of DHM has been of great interest to recent scholars. The field is full of

potential impact on industry, the military, and healthcare in terms of saving time and

money. Current DHM software can provide answers and valuable approximations for

problems that are risky and difficult to test on a human subject. For example, calculating

the maximum load and torque carried by the human spine is difficult without hurting the

spine. This field also became important in many industrial, health, sport, and military

areas because of the advancement in computer-based designs and software, which need

2

robust DHM models to test their prototypes. Instead of spending time and money

building a new car prototype to test driver discomfort, engineers can use DHM software

like Santos™ to have a virtual human with realistic anthropometries sit inside the

prototype in the computer. Santos is physics-based DHM software with a realistic full

body of 55 degrees of freedom (DOFs) that was developed by the Virtual Soldier

Research (VSR) program at the University of Iowa. The software can provide posture and

motion predictions for various tasks and scenarios. Then, information like joint angle and

torque and compression load on each DOF is provided, as well as other measurements

like ground reaction forces, balance, and energy consumption.

In physics-based DHMs like Santos, powerful and complicated methods are

incorporated in the software to solve posture and motion prediction problems by

optimization. Even though posture prediction is not a simple problem to solve, its

optimization problem runs faster than the motion prediction one. The running time in

posture prediction is in the fractions of a second, while the running time in motion

prediction is in minutes. Motion prediction is more complicated, especially for a full

DHM, because it requires dynamic prediction for all the body’s DOFs under many

constraints. The motion prediction method used in Santos, which is called predictive

dynamics (PD) (Xiang et al., 2010), is flexible in showing the cause and effect of a

predicted task(s). Computational speed, however, is the main limitation to making PD

work in real time. Due to the size of the problem, which includes hundreds of design

variables and thousands of constraints, the PD algorithm needs a long time, averaging in

minutes, to run and provide the motion for a task. The calculations take time even for

simple tasks or for rerunning a task with minor input changes. Hence, there is a need for

3

real-time motion prediction to allow the user to see immediate results for any changes in

task inputs.

Successful implementation of ANNs in DHM motion problems will open new

areas for the use of ANNs in DHM applications, which is still an active research topic

with many issues to be resolved. Eventually, handling the complicated motion problems

for instant predictions within a single ANN design should reveal more advancements and

capabilities in the DHM field. The RBN design can be modified to handle large-scale

problems accurately with a minimal number of training cases, and with no training or

memory issues. The new RBN design depends on and adds to the wealth of previous

research on ANN designs, which will be discussed in the next section, to implement

multiple training approaches for maximum performance. The RBN, which is considered

unconstrained optimization, can also involve a method for constraint satisfaction by

either imposing the constraints within its training process, or by modifying the network

output(s) to satisfy the constraints. Furthermore, the new RBN model can be used to

extract useful feedback about the predicted task(s) like the relationships between different

network inputs and their corresponding outputs, the most effective input(s) and key

outputs, and the most important training case(s) to help the task validation and

development processes.

1.1. Artificial neural network background

This section provides an overview of the technical aspects of ANNs. The reasons

for selecting the ANN from among other data mining tools and statistical methods are

4

also illustrated. This in turn provides a foundation for discussing the state of the art and

recently developed methods in the next section.

1.1.1. Biological analogy

The human brain is a decision system that has millions of units, called neurons,

connected in a complicated way. The brain is more powerful and faster than any

computer processor in handling complicated problems and providing a specific proper

response for any mental, physical, or psychological situation. The brain is capable of

doing so because it depends on memorizing and experiencing various situations a person

faces to perform the relevant tasks. The human brain has multiple layers of neurons that

interact with each other in parallel. This parallel interaction means that each neuron

receives input lines from various neurons in the previous layer and sends different output

lines to many neurons in the next layer. The neuron also sends values to the previous

layer and receives values from the next layer. In addition, a neuron can still receive and

transmit signals from and to other neurons even when some neurons’ lines stop passing

these signals because of the parallel connections. As in any other system, the received

signal is called “input,” and the transmitted signal is called “output.” For a task to be

learned and memorized by the brain, the signals received and sent to and from the

neurons are set for the task to provide the proper decision.

The brain’s powerful abilities include, but are not limited to, making proper

decisions when solving various tasks like motions, postures, and mathematical

calculations. This ability is gained by experiencing previous exact or similar examples for

the solved tasks. A simple example is a baby who recognizes fire as something that hurts

5

and stays away from it after the first time he/she touches it. Based on the brain’s

underlying units’ (neurons’) functionalities in memorizing tasks by training (experience),

studies have mimicked that architecture to duplicate the brain’s ability to solve various

complex practical problems efficiently. The new mimicked design is called an artificial

neural network (ANN) (Figure 1.1). As the multiple connected neurons (i.e., a synapse

connection) in the human brain, the ANN includes units, usually called neurons,

distributed in different layers and all connected together. The left side of the figure shows

a brain’s neuron, while the right side shows an ANN with a single neuron.

Figure 1.1: Schemes for human brain neuron and an artificial neural network (ANN).

An ANN is a mathematical approach consisting of multiple units, with

parameters, connected together. The units’ parameters are adapted to predict a system

output(s) using data drawn from that system. Like human neurons, an ANN has three

main parts: 1) network input(s) (x), which represent the dendrites in part A in Figure 1.1,

2) a hidden layer with multi-neurons (i.e., the neurons represent the network basis

functions), in which each represents the cell body in part A, and 3) network output(s) (y),

which represent the axon terminals in part A. Inside the hidden layer neurons, the main

mathematical calculations occur to process the inputs and provide the proper outputs. The

6

axon, shown in part A in Figure 1.1, has a threshold value (i.e., weight) at which the

neuron provides output only when the signal that goes to the axon is larger than its

threshold. Like the axon, there are lines (connections) between the ANN neurons, called

connection weights, where the values received and sent to and from the neuron differ

depending on the weight value of the line. The weight value in each line is decided by a

learning process that is performed in order to remember a task.

1.1.2. Artificial neural network as a data mining tool

Because of ANNs’ powerful ability to predict the output of complicated problems,

there are many successful applications for their use as pattern recognition models. Pattern

recognition is the discovery of specific relationships (patterns) between various system

inputs to provide proper output(s) correspondingly. The ability of ANNs has been pointed

out in various sciences and industrial fields (Chakraborty, Mehrotra, Mohan, & Ranka,

1992; Fausett, 1994; He & Jagannathan, 2007; Lapedes & Farber, 1987; Patterson, 1998;

Stinchcombe & White, 1989; Trippi & Turban, 1992; White, 1989; Widrow, Rumelhart,

& Lehr, 1994; G. Zhang, Eddy Patuwo, & Y Hu, 1998). Depending on the type of

problem and its accuracy requirements, different types of ANNs are used. An ANN is

generally used in predicting all types of problems in data mining, which is the process of

building a model that is useful, understandable, and usable from data by discovering its

patterns.

There is a major difference between the focus and purpose of using ANNs, and all

data mining models in general, and the traditional statistical tools in data discoveries.

Data mining is more oriented toward applications than toward the basic nature of the

7

underlying phenomena of the data. For example, uncovering the nature of the underlying

functions or the specific types of interactive, multivariate dependencies between variables

is not the main goal of data mining. Instead, the focus is on producing a solution that can

generate useful predictions. Therefore, data mining accepts techniques like the ANN to

generate valid powerful predictions, but data mining is usually not capable of identifying

the specific nature of the interrelations between the variables (i.e., a larger amount of

feedback that can be drawn from statistics).

Data mining problems are divided into three main categories: 1) clustering, 2)

classification, and 3) regression. Data clustering creates relationships between fed inputs

and separates them into different clusters based on their similarities. Data classification

assigns inputs to their classes from among different classes. Data regression means

creating a curve that passes and fits between training data sets. More details about data

mining concepts and techniques are provided in the literature (Han, Kamber, & Pei,

2006).

There are different types of ANNs to be used for the prediction of data mining

problems. The Kohonen self-organizing network (Kohonen, 1990, 2001) is used in

clustering problems. Regression and classification problems are usually predicted using

the feed-forward back-propagation network (FFN) (Hecht-Nielsen, 1989; Rumelhart,

Hinton, & Williams, 1985) and radial-basis network (RBN) (Broomhead & Lowe, 1988;

Park & Sandberg, 1991), both of which have other subtypes under different names. The

same type of network can be used to predict both regression and classification problems

by using different transfer functions in its design, specifically in the neurons of the output

layer. The typical option for classification problems is the sigmoidal function, while the

8

linear function is used for regression problems. The recurrent neural network

(Pearlmutter, 1989; Williams & Zipser, 1989) is used for time series problems, which can

also be considered regression problems. More details about various types of ANNs are

provided in the literature (Bishop & Nasrabadi, 2006; Hagan, Demuth, & Beale, 1996).

Among data mining techniques, the ANN is preferred in many applications,

including those in this work, for the following reasons:

1. The ANN has a relatively simple design and a fast training process, given the

powerful results. Compared to other competitive data mining techniques like support

vector machines (SVMs), which require the transfer function to be determined by the

user depending on the desired model complexity and optimization with a large

number of parameters, the ANN design is simpler to implement and train. That makes

the ANN the first option for many scholars. ANN is also especially easy and flexible

to implement in hardware (Mathia & Clark, 2002; Moerland & Fiesler, 1997).

2. The ANN can learn various types of problems using the same transfer function (basis

function). The transfer function is the mapping function that is used to transfer the

input space to the output space (i.e., it is the function that creates the relationships

between the inputs and outputs). Other data mining methods require the user to

determine the proper transfer function to be used for each problem in advance, which

is hard to determine. Furthermore, even with simple transfer functions, methods like

SVM require optimization to be run for a large number of parameters, which

produces issues for many optimization tools (Collobert, Bengio, & Bengio, 2002).

3. The ANN has been proven to outperform competing data mining techniques in many

practical applications, as will be shown by the work of many scholars presented later

9

in this section. Flexible ANN design with adaptable complexity to various problems

allows for handling various problems successfully.

1.1.3. Regression with artificial neural networks

Since this research focuses on DHM motion prediction, which is a regression

problem, the ANN details are narrowed to discuss the design of ANNs for regression

problems. The types of ANNs that are typically used in regression problems, which

mainly include FFN and RBN, act like a multi-dimensional curve-fitting model (i.e.,

regression curve). The statistical term “curve fitting” refers to the process of constructing

a curve (i.e., a mathematical function) that has the best fit for a group of data. These fitted

curves are constructed to be used for 1) aiding in data visualization, 2) providing values

of a function where no data are available, and 3) extracting and analyzing the

relationships among various inputs (i.e., variables). More details about regression

analysis and curve-fitting topics are covered in the literature (Deming, 1944; Kleinbaum,

Kupper, Nizam, & Rosenberg, 2013).

The following specifically summarizes the reasons for using an ANN in

predicting regression problems rather than traditional statistical regression methods:

1. The ANN runs faster than the conventional curve-fitting tools (Bishop & Roach,

1992). This is especially true when the curves are nonlinear, which is the case for

most practical problems. The speed of ANN calculations is due to the parallel

calculations for its hidden units.

2. The user in regression models should have some knowledge about the complexity of

the problem (the type or order of the curve required). That knowledge is not available

10

http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Data

or accurate in most cases. On the other hand, the ANN fits the problem without these

assumptions and determines the level of complexity needed to properly predict the

problem. Moreover, the adapted ANN parameters to fit the problem might imply

practical significance and insights about the problem.

3. Most traditional curve-fitting tools require building a separate curve (model) for each

problem’s predicted output. On the other hand, a single ANN model can be used

successfully to predict a relatively large number of outputs, in the hundreds (M.

Bataineh, Marler, & Abdel-Malek, 2012).

In general, when an ANN is designed, its complexity depends on the problem to

be solved. The complexity of the problem is proportional to the number of inputs that the

network needs to handle, the inter-relationships of the inputs, and the number of outputs

the network needs to predict. Building an efficient and accurate ANN requires careful

study of issues related to the network, including: (1) a universal function approximation

capability (i.e., ability to generalize the problem prediction), (2) resistance to noise or

missing data (i.e., filtering the noise from data and extracting the features’ relationships

properly), (3) accommodation of multiple nonlinear variables for unknown interactions,

and 4) choosing the proper type of ANN for the best problem prediction (Geman,

Bienenstock, & Doursat, 1992; Twomey & Smith, 1998).

1.2. Literature review

This section reviews the state of the art in the field of ANNs and their

applications, with a focus on the applications related to dynamics and DHM. The section

is divided into subsections to illustrate detailed information about different categories

11

related to ANN design developments and applications. The deficiencies and limitations in

each category are also presented. In addition, many definitions and terminologies are

provided throughout the section.

1.2.1. Techniques in artificial neural network design

This section reviews the current state of the art with respect to the major

developments in ANN designs and training approaches. Separate subsections are

presented for the well-known approaches that have been introduced to improve the

prediction capabilities of ANNs and other data mining techniques. Basically, most

presented approaches experience limited accuracy (performance) capabilities related to

either poor training with heuristic settings, training algorithms that are specialized for

limited types of problems, or a combination of the two. Other techniques experience

training difficulties when applied for large-scale problems. Therefore, such approaches

cannot be used in designing an ANN model for the large-scale application of DHM

motion problems.

In addition to its powerful ability in problem prediction relative to other data

mining and statistical approaches, the ANN has an advantage in computational speed.

When a powerful computational tool is needed for fast prediction of a complicated

system’s output, many scholars have presented the ANN as a method that provides real-

time and stable performance over the slowly converged optimization approaches

(Cochocki & Unbehauen, 1993; Kennedy & Chua, 1988; Maa & Shanblatt, 1992; Xia,

1996; S. Zhang & Constantinides, 1992). In one study (Xia & Wang, 1998), for example,

the authors proposed a methodology for globally convergent optimization of ANNs and

12

tested it on theoretical examples. Comprehensive testing for these proposed ANN-based

methods, however, was not done on practical complicated problems. Moreover, the

accuracy and generalization ability of the outputs from those methods were not

investigated.

The originally introduced ANN design, which is the FFN and its variants like

those presented in the literature (Huang, 2003; Reed & Marks, 1998), has been modified

and applied to work for various types of classification and regression applications. Some

of the state of the art for the currently available types of ANNs and their modified

versions are presented in the literature (G. Zhang et al., 1998). As an example for such

design modification, Zhang and Wu (2008) proposed an improved optimization approach

for solving the local optimum problem in FFN design. The network’s connection weights

in that approach are first assigned to random numbers between -1 and 1. Then, the

bacterial chemotaxis optimization approach is used to find the optimum weight values in

the network. Although the proposed method was tested on some examples, there is still a

computational issue with the use of the FFN in practical large applications that have a

relatively large number of design variables. Moreover, design improvements should be

focused more on types like the RBN because it already provides global solutions. The

RBN can be trained without local minima issues, as shown in the literature (Bianchini,

Frasconi, & Gori, 1995; Haykin & Network, 2004), because the used cost function is

local minima free with respect to all the weights (i.e., the design variables) However, its

parameters need to be selected properly to achieve proper performance.

Other scholars have been performing modifications on the traditional ANN

models to meet some requirements and/or accuracy for the problems being solved. Platt

13

(1991) presented a dynamically changed ANN design to allocate new hidden units and

adjust the parameters of the existing ones when poor network performance is obtained for

new inputs. The proposed network, however, might experience stability issues because its

architecture is not fixed. Poor performance could happen when testing new inputs with

the modified network’s parameters. As an alternative to the random or heuristic methods

in assigning the Gaussian basis-functions’ widths in RBN, scholars have assigned the

widths to be found by the distance to the nearest center (Moody & Darken, 1988; Moody

& Darken, 1989) or by the k-means method (Lloyd, 1982; MacQueen, 1967). Although

the presented designs generally show faster learning processes with a similar number of

hidden units, the accuracy improvements are neither noted nor investigated. The fast

learning process is only necessary for an online training process like time series

applications. The main goal in most regression and classification applications is to obtain

the best possible accuracy, since the produced trained ANN will already run quickly.

One of the known special ANN designs is the general regression network (GRN)

(Specht, 1991). That design was proposed as a fast curve-fitting tool that provides its

output as a weighted sum of the cases used in the training process. As an example of a

successful GRN application, it was used in large-scale motion prediction problems with a

limited number of training cases (Mohammad Bataineh, 2012). That work illustrates that

it is possible to use an ANN to provide acceptably accurate results for a large problem

using few training cases. The GRN was designed to predict 330 outputs using 52 training

cases. The GRN, however, has limited generalization capability because it has no

underlying training process in its design. The GRN design experiences over-fitting issues,

which occur because the ANN is specialized in predicting the training data but poorly

14

generalized for prediction of any other cases. In addition, the GRN might experience

unstable performance when the available training data is too limited.

Different approaches are proposed to help solve the limited performance of ANNs

and other models in the pattern recognition field. Basically, these approaches focus on

assisting more generalized network performance. With more generalization, the network

has less error when predicting its output(s) for new test cases of the problem being

predicted. The main and most popular approaches are summarized in the following

subsections.

1.2.1.1 Ensemble

The ensemble method was introduced to resolve poor generalization in the ANN

and other data mining tools and has been applied in various ANN designs and

applications. The idea of the ensemble ANN is to design a combination of different

networks (i.e., predictors) that are trained individually. Then, the prediction (i.e.,

decision) in the ensemble is performed by majority voting in classification and averaging

their outputs in regression. A weighted combination of networks is also used.

In general, the complexity of the ANN design is chosen to reflect the complexity

of the predicted system, which is unknown in most cases. Therefore, a more complex

ANN is not always necessary for better problem generalization. It is also hard to find the

optimal needed network design because most traditional ANNs depend mainly on

evaluating the training error and some testing cases for the predicted problem.

Consequently, ensembles of ANNs are used to improve the predictions. The ensembles

have been investigated by several scholars in the neural networks community (Hansen &

Salamon, 1990; Krogh & Vedelsby, 1995; Perrone & Cooper, 1992; Wolpert, 1992). The

15

most common types of ensembles are boosting (Freund & Schapire, 1995; Schapire,

1990) and bagging (Breiman, 1996). The methods differ in the way the training process is

performed and the training sets are generated.

The ANN ensembles have been used successfully with superior performance in

many applications (Cherkauer, 1996; Drucker, Schapire, & Simard, 1993; Hansen,

Liisberg, & Salamon, 1992; Sharkey, 1999; Zhou, Jiang, Yang, & Chen, 2002). The

ensembles, however, experience over-fitting and poor generalization problems in other

applications. Scholars have shown that a basic single ANN or an ensemble ANN with

fewer networks may perform better than one that includes all ANNs (Zhou, Wu, & Tang,

2002). That work employed an approach called GASEN to show that using few ANNs in

the ensembles is better than using all of them. The study showed that the same results

apply in both regression and classification problems. Ting and Witten (2011) also

addressed some issues in the stacked generalization method, which is a type of ensemble

proposed in the literature (Wolpert, 1992) to produce more appropriate performance.

1.2.1.2 Knowledge-based neural network

Knowledge-based neural network (KBNN) is a hybrid learning method for an

ANN that uses two algorithms, a theoretical knowledge-based algorithm and data-based

algorithm (Towell & Shavlik, 1994). Both algorithms are combined in an integrated

training process that should lead to more generalized performance than that obtained

using a single algorithm. The knowledge-based algorithm depends on understanding and

defining the closest theory of the problem’s solution domain to provide the initial

network model. The data-based algorithm corrects the initial network to provide the final

trained network. The data-based algorithm is similar to any typical ANN learning process

16

that depends on the available training data. The resulting KBNN is a mixture of both

algorithms to reach the most proper prediction. The KBNN, when both algorithms are

initiated properly, outperforms other typical learning methods.

On the other hand, the KBNN needs prior knowledge about the predicted problem

that might be hard to obtain. The KBNN also causes problems for the typical data-based

algorithms because the initial network already has training error around zero. That in turn

allows for minor changes to be produced by the second algorithm before setting the final

network, since that algorithm also depends on the reduction of the training error.

Attempts have been made to address this issue by making major changes to the used data-

based algorithms (Hinton, 1989; Watrous, 1988). Although the knowledge-based

algorithm can handle some types of problems, the classification types in specific, it

typically experiences limited performance when predicting the regression problems

(Towell & Shavlik, 1994).

1.2.1.3 Extreme learning machine

The Extreme learning machine (ELM) was introduced recently as a new training

algorithm that improves the speed of the traditional learning process in ANNs, as well as

improving ANN performance (Huang, Zhu, & Siew, 2004). The method replaces the

gradient-descent-based optimization with a faster method that depends on calculating the

network output weights directly using the hidden outputs. Since its introduction, the

method has undergone various modifications and developments (Cao, Lin, Huang, & Liu,

2012; Deng, Zheng, & Chen, 2009; Huang & Chen, 2008; Huang & Siew, 2004; Huang,

Zhou, Ding, & Zhang, 2012; Huang, Zhu, & Siew, 2006). The ELM method has been

applied in many applications (Liang, Saratchandran, Huang, & Sundararajan, 2006;

17

Statnikov, Aliferis, Tsamardinos, Hardin, & Levy, 2005; Suresh, Venkatesh Babu, &

Kim, 2009; R. Zhang, Huang, Sundararajan, & Saratchandran, 2007). The ensembles idea

was also incorporated in the ELM method (Sun, Choi, Au, & Yu, 2008), where the final

predicted output is the average of the ELM outputs. The resulting ensemble model had a

better generalization performance than that of a single ELM. More work on ensemble

ELM was conducted for applications in time series prediction (Lan, Soh, & Huang, 2009)

and fast online sequential learning (Van Heeswijk et al., 2009). A detailed state of the art

of the method’s algorithms, modifications, and future work is provided in the literature

(Huang, Wang, & Lan, 2011).

On the other hand, application of ELM has limitations, including the following: 1)

its generalization performance is still questionable; the method focuses on obtaining zero

training error, which can be achieved easily in any simple learning or optimization

method; 2) input weights and biases, or hidden centers and hidden function impacts in

RBN, are assigned randomly in the original ELM and its recent modifications, which

limits the network performance, leaves some heuristics for the user that might be

assigned badly, and produces a network with more unnecessary hidden neurons; 3) the

ELM algorithm is not sensitive to the number of hidden neurons compared to the back-

propagation algorithm; and 4) newer modifications of the method slow its learning speed

because of iterative learning steps (Huang & Chen, 2008). Some of these limitations have

been investigated by later scholars (Zhu, Qin, Suganthan, & Huang, 2005) to resolve the

randomness in assigning input weights and bias by using differential evolution. Suresh et

al. (2010) also introduced the sparse ELM to reduce the computational time in ELM.

18

1.2.2. Large-scale applications

Although there has been limited work on the use of ANNs with large problems

because of training and accuracy issues, ANNs have nonetheless been used to solve some

specific types of large-scale problems. The definition and interpretation of large-scale

problems are first presented in this section, followed by a review of methods used

specifically for such problems. These works have shown promising results.

Typically, when a scholar of ANNs, and data mining in general, refers to

application as large-scale problem, it means that the problem has a large number of

training cases. That is because most applications have few inputs and outputs (on the

order of tens or less), while it is common to have applications with large amounts of

training data (on the order of thousands or tens of thousands) to be considered in the

training process. On the other hand, applications like DHM motion problems involve a

relatively small number of training cases and inputs (on the order of tens or hundreds)

and a large number of outputs (on the order of hundreds). Motion problems can also be

called large-scale in terms of the ratio of outputs to input or outputs to the number of

training cases. The motion large-scale problem is a unique and challenging problem for

the effort of developing a new ANN in this work.

Research has shown that some types of ANNs, specifically the FFN, cannot be

used for large-scale problems because of memory and poor convergence issues. The FFN

requires a massive number of parameters to be calculated and uses a back-propagation

training paradigm that can become stuck easily at local poor solutions. Other models of

ANNs, such as the RBN, which will be illustrated in Chapter 2, show superior

performance in such applications; however, they still take a long time to be trained and

19

produce a large network that runs slowly. There has been limited work on getting ANNs

to work more efficiently for large-scale problems. Most of that work considers only

problems with large training cases (sets) because they are the common and typical type of

large-scale problems.

Scholars working on large-scale problems and large training sets have focused on

the use of the RBN or multi-ANNs as the solution for the memory and poor

generalization issues in the training process. For instance, sparse Gaussian methods,

which are considered Bayesian approaches, were introduced to solve such problems

(Quiñonero-Candela & Rasmussen, 2005; Snelson & Ghahramani, 2006). A mixture of

ANNs, specifically the RBN, was presented, in which outputs are a weighted average to

provide the final output for regression problems with more than hundreds of thousands of

training cases (Lázaro-Gredilla & Figueiras-Vidal, 2010). When compared to the sparse

Gaussian process methods, the method showed improved performance and comparable

computational cost. Heeswijk et al. (2011) also presented faster ensemble ELMs for

large-scale data set regression applications by using multiple computer CPU cores and

parallel calculations.

Limited work on the interpretation of a large-scale problem in terms of the ratios

of output to input and/or output to the number of training cases has been performed

recently. The GRN was used to predict 330 outputs for the DHM motion prediction tasks

of walking and jumping on a box using 52 and 24 training cases, respectively

(Mohammad Bataineh, 2012; M. Bataineh et al., 2012). The results were relatively

accepted, especially for cases with inputs close to the training cases. The network running

time was also in the fractions of seconds in both training and testing modes. Despite the

20

aforementioned advantages of the GRN, its design has some capability limitations, which

are provided in Section 1.1.2. In general, the ANN is potentially useful for producing

real-time and more accurate results for such large-scale problems.

1.2.3. Constrained problems

With applications like dynamic human motion prediction, it is critical that all

constraints, like joint and torque limits, contact points with the ground and other subjects,

etc. are satisfied. However, direct use of ANNs can result in unsatisfied constraints and

thus unrealistic simulated motion. This section provides some examples from the

literature of successful incorporation of constraints when using ANNs for specific

applications. Since typical training processes for ANN involve unconstrained

optimization, constraints are generally incorporated beyond the network design. General

issues are discussed regarding the constraint implementation within ANN designs in the

provided literature.

In the pattern recognition community, the ANN is considered a non-constrained

optimization tool that runs extremely fast once its training process is completed. The

ANN’s design and its parameters are all set in the training process, which is illustrated in

Chapter 2, to predict a specific task. Then, the network can easily predict any new task

inputs because it is set to predict such tasks. Some scholars have investigated the use of

the powerful ANN capability in the fast prediction of complex tasks to predict tasks that

involve some constraints to be satisfied. Such works are known under different names,

including but not limited to adaptive constrained neural network, dynamic ANNs,

constrained optimization using ANNs, and the hybrid ANN approach.

21

Yang and Wang (2000) proposed an adaptive ANN with constraint satisfaction

for job-shop scheduling problems. The network adjusts its weights and biases to satisfy

the constraints along with considering some heuristics for the presented design. The use

of dynamic recurrent neural network has been proposed to solve constraint optimization

problems (Bouzerdoum & Pattison, 1993; Xia, Leung, & Wang, 2002; Xia & Wang,

2005; Y. Zhang & Wang, 2002). The proposed models were tested successfully on some

numerical and experimental examples, but not on a practical complex application. The

speed of computations and performance in such simplified network models is also

arguable for general applications. The recurrent network model was, then, expanded to be

applied on manipulators that are constrained by physical joints and velocity limits (Y.

Zhang, Wang, & Xia, 2003). The work performed distributed parallel computations to

obtain fast online outputs for a simple 7- DOF robotic manipulator. Moreover, Zhang and

Li (2009) introduced another ANN model to solve online time-varying problems subject

to linear equality constraints.

Gholizadeh et al. (2008) presented an ANN to find the optimal weight of

structures that are subject to natural frequency constraints using a combination of RBN

and genetic algorithm. The study used RBN and wavelet-RBN models to provide

approximations for the natural frequencies to improve the computational speed of the

proposed optimization algorithm. That work, however, employed other optimization tools

to perform the optimization; ANNs were used to provide predictions for the constraint

values for calculation speed-up. In general, almost all these works are task-specific; the

proposed approaches work only for the intended tasks by updating the network design

parameters or complementing optimization tools to satisfy the constraints. In these

22

special network designs, the networks need to run through extra computationally costly

steps to adjust their parameters to satisfy the violated constraints. In addition, even with

satisfied constraints, the updated designs might not be guaranteed to provide feasible,

successful, and accepted solutions for all input cases. The ability of ANNs to produce fast

and reliable solutions becomes vulnerable thereafter.

1.2.4. Dynamics and human simulations

This section focuses on presenting the state of the art for the use of ANNs in

dynamics applications, especially those in human and robotics motions. A summary of

the existing limitations in the field, specifically those related to results with limited

accuracy and prediction of complex problems, is also presented.

There has been limited research in the use of ANNs in the DHM and virtual

reality fields because these fields are relatively new. The main use of ANNs has been

focused on human model posture prediction (Jung & Park, 1994; B. Zhang, Horváth,

Molenbroek, & Snijders, 2010) and motion prediction of robotics and dynamics systems

(Frank, Davey, & Hunt, 2001). Motion-related applications include, but are not limited

to, robotics and controller system motion, motion analysis, reconstruction of dynamic

objects, and time-series dynamic prediction and classification. Recently, researchers have

shown more interest in using different types of ANNs as prediction models to handle

motion and kinematics problems for the following reasons:

1. Dynamics problems, especially human motion, are complicated to duplicate using

simple prediction models. These problems can be modeled using physics-based

models (Xiang et al., 2010), but it is computationally costly. Prediction models can be

23

also designed for the problem using prerecorded data or various combinations of

inputs and their corresponding outputs. However, for many problems, that is either

costly or unavailable. Hence, ANNs are good candidates to provide prediction for

such problems because they have been proven to be successful in providing instant

results for complicated problems (Hagan et al., 1996; Looney, 1997). An ANN can

provide acceptable results for many problems without understanding the underlying

relationships between the problem’s variables.

2. Reliable training sources for ANNs are widely available. Recently, more advanced

motion capture and video systems have been developed to capture human and object

dynamics accurately and naturally. In addition, various humanoid and digital human

motions can be obtained from simulation software, physics-based digital models, and

gaming modeling.

There are many works that focus on using ANNs in robotics motion and the

manipulation of their controller systems. Some scholars consider motion prediction as a

time series problem to be predicted; Frank (2001) provided some investigations on ANN

performance in that area. Stakem and AlRegib (2008) used an ANN for predicting human

arm movement in a virtual environment. The ANN in that work, the FFN, was used as

real-time predictor to solve delay problems in the sensor and network that were used to

detect the arm motion. The FFN has six inputs, six hidden neurons, and eight outputs,

representing 800 ms of arm movements. In a simple task like performing a reaching

motion, the predicted movements after 400 ms (the first 4 outputs) were less accurate

than those before that time. The prediction was inaccurate after 100 ms when tested in

more complex tasks like shoe tying. In the summary, it was suggested that for further

24

successful predictions, the network should be either retrained with more data or predict

less than 200 ms (fewer outputs). The work, however, did not recommend investigating

the use of other more accurate types of ANNs like the RBN.

Another dynamics application using ANNs was a robotics controller (Lewis,

Yesildirek, & Liu, 1996). A modified type of FFN was proposed where its weights were

updated on-line to act as a disturbance in robotic arm motion. The network performance

with 10 hidden neurons was tested to adjust the joint angles of a planar two-link arm. It

was found that adding the ANN improved the tracking performance of the system

significantly. On the other hand, the running time for updating the network weights was

slow (around 1 minute). Furthermore, the number of hidden neurons is heuristic, so the

model simulation should be repeated many times with different numbers before selecting

the final proper network design. In a similar application, Kun and Miller Iii (1996)

proposed an adaptive dynamic balance scheme for a robot using an ANN. Three neural

networks were used to balance the motion of side to side, forward to back, and preserving

foot contact for a two-legged walking machine (Miller III, Glanz, & Kraft III, 1990;

Miller, Werbos, & Sutton, 1995). The networks were not involved in the prediction of the

actual motion. Kim and Lewis (1999) also proposed the use of two ANNs in controlling a

robot manipulator. The system was evaluated successfully on a two-link robot

manipulator, demonstrating the ANN’s ability to handle the nonlinear unknown

parameters in the system manipulator.

Even though the powerful computational ability of ANNs is outstanding, their use

within direct and complicated motion prediction problems is still limited. That might be

because such problems involve too many input parameters and outputs, which requires

25

many combinations of cases for the ANN to be trained well. In addition, the typically-

used FFN in many applications experiences memory and training issues when used for

relatively large-scale problems like motion and DHM applications. Most scholars

working on motion predictions, which are relatively new, consider using the traditional

FFN type of ANNs. There have been, however, some successful uses of ANNs in

predicting a complete motion profile in the DHM field (M. Bataineh et al., 2012). In that

work, the GRN was used to predict 330 outputs that represent profile values for a full 55

DOF in the tasks of walking and jumping on a box. Although the GRN has some

limitations, the results were promising in terms of the acceptable accuracy achieved and

the extremely fast training time.

In addition to their prediction capabilities in dynamics problems, ANNs can be

useful in extracting and analyzing some information about the predicted problem. Koike

and Kawato (1995) presented the use of surface electromyography signals as inputs for

two FFNs to dynamically predict joint torques. Consequently, the predicted torque values

were used to reconstruct human arm movement with a forward dynamics model. The

experiments were limited to the shoulder and elbow joints, where two networks, each

with a single output, were used for predicting the torque of each joint to improve the

accuracy. An interesting conclusion was drawn from that work: that ANNs could be

helpful in forming some complicated calculations in the human environment like arm

stiffness and operations in the central nervous system. Despite the promising results in

that work, various joint torques should be combined in one model in order to provide

more insight on other calculations like arm stiffness because the shoulder and elbow

motions and torques, for instance, are implicitly related to and dependent on each other.

26

Yoo et al. (2008) also used the FFN, which was trained by gaits of various people, to

recognize humans automatically. The network had an architecture of 10 inputs, 28 hidden

neurons, and 13 outputs. The work elicited the potential use of ANNs as methods that are

able to improve gait analysis by handling the highly nonlinear relationships within gait

parameters.

In other motion-related applications, ANNs have been used as an indirect source

that led to providing improved motion predictions. Lung tumor motion during respiration

was predicted in advance using an FFN (Isaksson, Jalden, & Murphy, 2005). Their

network architecture included two hidden neurons and one output. Hong et al. (2002)

presented an expression-based real-time face animation using an FFN. When the network

is fed with a face expression, it can classify that expression as smiling or sad. Different

FFNs were also evaluated in that work for predicting many types of expressions. Ishu et

al. (2004) introduced a modified method for setting recurrent neural network parameters

using automatic heuristics. The method was tested on the motion identification of an

underwater robot. The results show that the proposed method was slow; many runs

needed to be performed, and each took around half a day to complete. Moreover, the

method was not tested on more complex problems.

Most of the preceding scholars used FFNs with single or few outputs to preserve

accuracy. This, in turn, limited the use of ANNs in many more complicated applications

because of the FFN’s history of producing poor local optimum solutions, as well as

experiencing memory issues with large numbers of inputs and/or outputs. Therefore, it is

crucial to investigate the performance of other types of ANNs in such applications,

especially for the applications related to DHM motions that are studied in this work.

27

1.3. Summary of literature review and motivation

Although extensive research has been conducted with ANNs, there are gaps in the

current state of the art with respect to prediction models for large-scale problems. In this

context, the term “large-scale” refers to the ratio between the number of outputs and the

number of inputs and/or training cases. Specifically in DHM motion prediction problems,

the large-scale problem could be referred to as the number of outputs. There is a critical

need, especially in the field of DHM, to develop a single model that is capable of

providing instant realistic prediction of whole-body motion. Moreover, the prediction

model should be designed in anticipation of minimal available training cases, as

producing training cases by using dynamic motion prediction can be computationally

expensive. To our knowledge, except for one study (Mohammad Bataineh, 2012), there

has not been work toward successful motion prediction of full-body DHM. The results of

that work were promising in terms of the accuracy produced for the given complex task

and the fast training and running times. Therefore, this work investigates the development

of the ANN as a means to predict the real-time and accurate results necessary for DHM

motion tasks. In pursuing this investigation, a new RBN design is introduced to overcome

the current limitations in the network design. The new design is also used to study and

provide insights regarding the inherent parameters in the predicted tasks.

The knowledge-based neural network (KBNN) (Towell & Shavlik, 1994), which

is a hybrid learning method for an ANN, is conceptually similar to this work as far as

proposing multiple stage training process for more accurate results. However, the KBNN

needs prior knowledge about the predicted problem that might be hard to obtain. The

KBNN also causes problems for the typical data-based algorithms because the initial

28

network already has training error around zero. That in turn allows for minor changes to

be produced by the second algorithm before setting the final network, since that

algorithm also depends on the reduction of the training error. Moreover, although the

knowledge-based algorithm can handle classification problems, regression problems are

typically difficult to handle (Towell & Shavlik, 1994). In contrast, the new ANN design

in this work proposes two data-based approaches that are used to set all network

parameters and reduce the training error. The new design is mainly developed to enhance

the prediction capabilities of the regression types of problems with application in the

DHM field.

The use of typical FFNs and their variants in large-scale applications like motion

prediction is limited due to their computational issues and poor performance. As stated,

the RBN has been found to be a better alternative for such regression applications,

although its design requires some modifications. Extensive improvements and

developments were recently introduced to various ANN design and training techniques,

but there are still some limitations related to the generalization (i.e., limited accuracy) and

applicability to extreme applications like large-scale problems and those with reduced

training data. Although some of the limitations like the computational speed have been

addressed in new approaches like ELM, such approaches’ generalization performance

and sensitivity to various network parameters are still questionable. The new RBN design

proposed in this work should solve the limitations for regression types of problems,

especially by the minimal heuristics design and improved robust performance.

To date, given that ANN is considered a non-constrained optimization tool, there

is no specific method that proposes a robust, fast, and accurate ANN design that

29

incorporates constraints to be completely satisfied within its training process. Almost all

the works in the literature that apply ANN with constraints are task-specific. The

approaches proposed in the literature work only for the intended tasks by either updating

the network design parameters or complementing the network output(s) with an

optimization tool for constraint satisfaction. As a result, some of these approaches create

new issues for the network performance and slow down production of the final output(s).

This work evaluates new approaches for constraint implementation that are conceptually

similar to those proposed in the literature, but that might not affect the results produced

from the new RBN design. In addition, the new approaches can maintain the speed of

ANN calculations. Unlike the existing methods, the new approaches can be applied for

any task and any type of constraint.

This work targets a specific type of constraints in DHM motion problems that are

difficult to satisfy, even with the highly accurate results from the new RBN design. There

are two new approaches to be evaluated in this work for constraint implementation within

the new RBN design. Unlike the approaches presented in the literature, the first approach

satisfies the constraints within the training process. The network parameters are

optimized so that all the constraints are satisfied for the provided training data. The first

approach may lead to a network with stable, accurate, and fast performance in the testing

phase (i.e., when new input cases are provided). However, this approach cannot

guarantee constraint satisfaction at various task conditions. Nonetheless, in practical

applications like those in DHM motion, a slight violation in the task constraints is usually

allowed. Therefore, the first approach is evaluated toward that goal, as long as the

network produced computationally fast and acceptable solutions. The second approach

30

includes local modification of the network output(s) to satisfy the constraints. With a

well-trained network, and after it provides its outputs, they are modified by solving an

optimization that satisfies the task constraints. The optimization finds the network outputs

(design variable) to minimize a cost function that represents the difference between the

network outputs and the final ones and is subject to the constraints.

Moreover, this work focuses on implementing the new RBN in the Santos

software environment to be trained and run to provide real-time motion prediction, and to

possibly be populated for the prediction of other problems. Some work (Ishu, van Der

Zant, Becanovic, & Ploger, 2004) pointed out the need for automatic methods to run the

ANN quickly; this requires careful selection and modification of the approach

incorporated in the new RBN design. Such requirements are considered in the algorithms

used in the new design to facilitate automation of the whole training process to be

performed by any user.

Last but not least, other applications and analyses in the DHM predicted motion

problems are performed in this work. The new RBN is used to draw biomechanics

feedback about the predicted task. The predicted motion is analyzed from the network

parameters to address topics including, but not limited to: 1) the relationships between the

task inputs and outputs, 2) feedback from the important training case(s) to improve the

task development and validation, and 3) the task key conditions (inputs) and joints

(outputs).

The aforementioned deficiencies with respect to the performance of various ANN

models when are applied for special applications like motion prediction problems arise

the need for new ANN design with improved performance. The new design in this work

31

needs to have special improved performance when simulating the large-scale applications

with minimal available training data like the DHM motion prediction. This work is

motivated by the following:

1. The FFN, which was the first introduced and is the most commonly used network,

experiences poor performance in many applications. The poor performance is

especially apparent when it is used in regression problems. The RBN is more

powerful for predicting highly complicated regression problems like DHM motion.

2. There is a need for developing a new ANN design that is able to produce robust

results for large-scale problems with a reduced number of training cases. The robust

design should use approaches with minimal heuristics. Most current neural networks

are highly dependent on user-specified heuristic parameters, and performance can be

highly sensitive to improper selection of such parameters. Consequently, the use of

ANNs with complex applications is either limited or unsuccessful.

3. Physics-based motion prediction is a promising approach for providing useful

information about many tasks under various conditions. The approach, however, is

still computationally demanding; it takes time (minutes to hours) to predict the

motion, even with small changes in the task conditions. That is because the approach

involves solving an optimization problem that has hundreds of design variables with

thousands of constraints to be satisfied. The problem’s design variables represent the

motion task outputs, which are the values of the full-body DOFs at different time

frames of that task. The constraints represent the range of motion (ROM) for all

models’ DOFs, torque limits, etc. Therefore, we need to find a model that is able to

provide real-time motion prediction as the result of any changes the user may impose.

32

4. Incorporation of the large number of constraints in motion prediction tasks is

challenging for building a model with real-time results. This challenge is especially

crucial for ANN design because ANN does not have a direct method to implement

constraints within its design.

5. Although ANNs are used extensively, the practical significance of the network

parameters is rarely studied in detail and promises to provide insight into the problem

being simulated.

1.4. Hypothesis and research objectives

Successful implementation of ANNs in DHM motion problems will open new

areas for using the ANNs in DHM applications, which is still an active research topic

with many issues to be resolved. Eventually, handling the complicated motion problems

for instant predictions within a single ANN design might reveal inherent relationships in

the predicted task that are difficult to express physics-based models. Consequently, that

could lead to more advancements and capabilities in the DHM field. The RBN design can

be modified to handle large-scale problems accurately with a minimal number of training

cases, and with no training or memory issues. Specifically, the following hypotheses will

be tested:

1. The RBN training process can be modified to provide more accurate results for large-

scale problems with a reduced number of training cases. The new RBN design

depends on and adds to the wealth of previous research on ANN designs to

implement multiple training approaches for maximum performance.

33

2. The RBN parameters like the number of basis functions (i.e., neurons), basis

functions’ centers and widths, and output weights need to be set with minimal

heuristics using robust approaches in order to optimize accuracy and computational

efficiency.

3. With proper enhancement, the RBN can be used to predict human motion with

increased computational speed.

4. The RBN, which is considered unconstrained optimization, can involve a method for

constraint satisfaction by either imposing the constraints only within its training

process, or by modifying the network output(s) to satisfy the constraints.

5. The ANN, as a basis functions- and connections-based model, can be used to extract

useful feedback about the predicted task(s). Potential extracted information includes:

a) the relationships between different network inputs and their corresponding outputs

can determine the most effective input(s), and thus define specific input as the

dominant one in changing the major specific output(s); b) extraction of the most

important training case(s) from the basis functions’ centers and the connection

wrights values might help the task validation and development processes by using

that case to validate the whole task; and c) significant biomechanics information like

the key outputs (i.e., joints) in a task can be drawn and analyzed as those with the

most changing values.

The presented hypotheses are tested in this thesis by developing a new RBN

design that outperforms other models, especially when used for large-scale problems with

fewer training cases. This new design is thoroughly tested and evaluated with basic

problems before being used with more complex motion prediction problems. Next, the

34

design is modified to incorporate motion constraints. Finally, the biomechanics

implications of the network parameters are also studied and analyzed. This work pursues

the following objectives:

1. Design a new ANN to provide robust and improved performance with large-scale

problems with a reduced number of training cases.

2. Develop training approaches that facilitate automation of the whole training process

with involvement of minimal heuristics.

3. Use the new ANN design to provide accurate real-time prediction of motion tasks for

full DHM under various task conditions.

4. Develop new methods for constraint implementation within the ANN design to

improve the results. Implementing contact constraints in motion tasks is especially

important because these constraints can be easily violated, even with highly accurate

network results.

5. Extract useful information about the predicted tasks from ANN parameters, especially

for the large-scale DHM motion problems. For instance, using the network basis-

functions and their weights to evaluate the relative importance of the training cases.

In addition, the ANN might help in providing significant biomechanics information

and the task development and validation processes by drawing some relationships

between the task key input(s) and output(s).

1.5. Overview of the Thesis

The introduction chapter provides the current state of the art in ANN designs and

their main applications with a focus on those in the dynamics and DHM fields. The

35

chapter also includes the main aims to be achieved in this work. Chapter 2 provides

detailed background about the RBN as the proposed ANN to be used and modified for

use in DHM motion problems. In Chapter 3, new approaches for RBN design are

provided with detailed formulations. The new design is also tested and evaluated on

mathematical and practical problems. Chapter 4 presents new approaches for the

successful use of the new RBN design with large-scale predictive dynamic (PD)

applications. In addition, the chapter involves performance evaluation for the network

design with the new approaches on two PD tasks. Chapter 5 investigates new methods for

constraint implementation within the new network design. Different network models with

and without the new methods are evaluated and compared against each other. In Chapter

6, simulated task analyses are provided with the main focus on connecting the new

network parameters with the different parts of the simulated PD tasks. The chapter works

to extract the most critical inputs, outputs, and training cases for the task and network

performance from the network parameters. Finally, Chapter 7 provides summary and

discussions of the thesis work, as well as ideas for potential future work.

36

CHAPTER II

RADIAL-BASIS NETWORK (RBN) – BACKGROUND AND ANALYSIS

This chapter presents basic knowledge about the architecture of the radial-basis neural

network (RBN) in order to help highlight current deficiencies and to provide a technical

platform for discussions of new methods in subsequent chapters. As outlined in Chapter

1, the proposed work is ultimately concerned with applications to human modeling. In

particular, optimization-based dynamic motion prediction is classified as a regression

problem, which is described in Chapter 1. Consequently, the proposed work is concerned

primarily with regression problems. Along with feed-forward back-propagation (FFN),

RBN is the artificial neural network (ANN) used for regression problems. As explained

in Chapter 1, the FFN network has significant deficiencies that prohibit its use with

human modeling. Therefore, this work focuses specifically on RBN networks. The two

primary high-level benefits of RBN networks are itemized as follows:

1. The RBN can be adapted to provide highly accurate results for any complex problem.

The RBN training-process solution is always a global optimum because the transfer

function used in the RBN is quadratic and has one unique solution (i.e., the function

is positive definite) (Bishop & Nasrabadi, 2006; Ripley, 2007). Through its local-

response radial transfer functions, the RBN is a universal approximation for any

nonlinear complex problem (Hartman, Keeler, & Kowalski, 1990; Hornik, 1993;

Poggio & Girosi, 1990; Stinchcombe & White, 1989).

2. In addition to being relatively accurate, the training process for the RBN is

computationally fast. The RBN usually has no memory or training issues when used

37

to predict large-scale problems in terms of the number of training cases, inputs, and

outputs. This is because the RBN does not have a large number of weights to be

optimized in the training process. Hence, the RBN can be successfully trained using a

relatively large number (thousands) of training cases to predict multiple outputs

within one network model.

Despite the benefits of RBN networks as an overarching construct, there are

significant deficiencies in current RBN networks with respect to algorithm details,

especially when considered for applications to human modeling. Such applications

include accurately handling systems with a relatively high degree of complexity, working

with an insufficient or reduced number of training cases, and working with hundreds of

outputs like those in motion prediction tasks. This chapter first addresses the basic

concepts of the RBN and its architecture. It then describes the RBN design with respect

to computational equations, typical training methods, and approaches for setting various

network parameters. The final section discusses the RBN design limitations and needs.

2.1. Radial-basis network (RBN) architecture

The structure of RBN consists of three components called “layers.” These layers

each entail specific inputs, transfer functions, and outputs. Figure 2.1 shows the design of

an RBN for an I-dimensional input vector 𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐼𝐼] and an N-dimensional

output vector 𝒚𝒚 = [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁]. The middle layer, called the hidden layer, consists of

units called hidden neurons. Each hidden neuron acts as a transfer function called a basis

function, which maps the input space 𝑅𝑅𝐼𝐼to the output space 𝑅𝑅𝑁𝑁(𝒙𝒙 ∈ 𝑅𝑅𝐼𝐼 and 𝒚𝒚 ∈ 𝑅𝑅𝑁𝑁). The

vector space defined by the set of input values is often referred to as feature space, where

38

a feature is simply a component of the input vector. Conceptually, however, a feature

represents some practical aspect of the input vector. That is, different components might

represent very different aspects of the problem, potentially with very different units.

Various types of combinations of the basis functions form a regression curve for

predicting y for the given x. The specific nature of this regression curve is determined

during the training process. A full description of the traditional RBN is provided in the

literature (Looney, 1997; Wasserman, 1993).

Figure 2.1: Schematic of the radial-basis neural network (RBN).

In Figure 2.1, 𝒉𝒉 = [ℎ1,ℎ2, … ,ℎ𝑄𝑄] is the vector of the outputs from Q basis

functions. 𝒘𝒘𝑛𝑛 = [𝑤𝑤1𝑛𝑛,𝑤𝑤2𝑛𝑛, … ,𝑤𝑤𝑄𝑄𝑄𝑄]𝑇𝑇 is a vector of weighting factors that are determined

during the training process for the nth network output. There are N vectors of 𝒘𝒘𝑛𝑛 in the

matrix 𝑾𝑾 = [𝒘𝒘1,𝒘𝒘2, … ,𝒘𝒘𝑁𝑁]. The weights ultimately represent the relative significance

39

of their corresponding basis functions. Each weight scales its corresponding basis

function. The core of RBN calculations occurs in the neurons of the hidden layer, where

the basis functions are evaluated. Each hidden neuron is a radial basis function, usually of

the Gaussian function type.

ℎ𝑞𝑞 is determined as follows:

 ℎ𝑞𝑞(𝑟𝑟𝑞𝑞) = exp�− 𝑟𝑟𝑞𝑞 2𝜎𝜎𝑞𝑞2⁄ � (2.1)

ℎ𝑞𝑞 is inversely proportional to the distance between 𝒙𝒙 and the qth basis function

center (𝒖𝒖𝑞𝑞 = �𝑢𝑢𝑞𝑞1 𝑢𝑢𝑞𝑞2 …𝑢𝑢𝑞𝑞𝑞𝑞�), as shown in Equation 2.2. Its value is also proportional to

the radial-basis function width 𝜎𝜎𝑞𝑞 (i.e., Gaussian spread).

𝑟𝑟𝑞𝑞 = �𝒙𝒙 − 𝒖𝒖𝑞𝑞�

2
= �(𝑥𝑥𝑖𝑖 − 𝑢𝑢𝑞𝑞𝑞𝑞)2

𝐼𝐼

𝑖𝑖=1

 (2.2)

The value ℎ𝑞𝑞, as a function of 𝑟𝑟𝑞𝑞, equals 1 at its maximum, when x equals 𝒖𝒖𝑞𝑞, and

equals zero at its minimum.

The distance 𝑟𝑟𝑞𝑞 in Equation 2.2 is calculated as the squared Euclidean distance for

𝒙𝒙 from the qth basis function center (𝒖𝒖𝑞𝑞 = �𝑢𝑢𝑞𝑞1 𝑢𝑢𝑞𝑞2 …𝑢𝑢𝑞𝑞𝑞𝑞�). Figure 2.2 illustrates the

relationship between 𝑟𝑟𝑞𝑞 and the produced Gaussian-based output ℎ𝑞𝑞 for the qth basis

function. The figure also shows the contours of the ℎ𝑞𝑞 values, which decay as the radius 𝑟𝑟

increases. The value ℎ𝑞𝑞 equals 1 at maximum, when x equals 𝒖𝒖𝑞𝑞. The center 𝒖𝒖𝑞𝑞

represents a row in the matrix 𝑼𝑼 = �𝒖𝒖1 𝒖𝒖2 …𝒖𝒖𝑄𝑄�
𝑇𝑇
. Thus, 𝑟𝑟𝑞𝑞 indicates the distance of the

input vector x from the qth basis function center. If the centers of the basis functions are

selected such that the basis functions are far apart, then the corresponding 𝑟𝑟𝑞𝑞 for any

given x might be relatively small for one or multiple basis functions. The rest of the basis

40

functions, however, produce relatively large 𝑟𝑟𝑞𝑞 for that x, because they are set at further

locations. Consequently, only the basis functions that produce the relatively small 𝑟𝑟𝑞𝑞

contribute in the network final output.

Figure 2.2: Two-dimensional plot and contours for the Gaussian function type of radial

basis function.

 The function width 𝜎𝜎𝑞𝑞 (the Gaussian spread) is the primary tuning parameter in

RBN along with the number of basis functions (i.e., neurons) in the hidden layer.

Together, U and the vector of Gaussian widths 𝛔𝛔 define the basic shape of the response

surface that is determined by training the neural network.

An illustrative example for the basis function centers is shown in Figure 2.3. The

network in this example has a two-dimensional feature space, 𝑥𝑥1 and 𝑥𝑥2. The radial

functions 𝒉𝒉 are circles with different sizes that decay from their centers U (i.e., contours

of larger values when closer to the center). The circles’ sizes of a basis function (ℎ𝑞𝑞) are

defined by 𝜎𝜎𝑞𝑞. Each ℎ𝑞𝑞 , with a center at 𝒖𝒖𝑞𝑞, has a maximum value of 1 and almost zero

at its largest contour.

41

Figure 2.3: Portion of network radial-basis functions curves in two-dimensional feature

space (𝑥𝑥1 and 𝑥𝑥2 are the inputs).

In the network, when all basis functions outputs (𝒉𝒉 = [ℎ1 ℎ2 … . .ℎ𝑄𝑄]) are

calculated based on Equation 2.1, 𝒉𝒉 enters each one of the output neurons to calculate the

final network outputs 𝒚𝒚. Figure 2.4 shows a portion of the RBN, shown in Figure 2.1, that

corresponds to the calculations in the nth output neuron to produce the final nth output

(𝑦𝑦𝑛𝑛), which is calculated in Equation 2.3. The output 𝑦𝑦𝑛𝑛 is a weighted sum produced by

multiplying the elements of 𝒉𝒉 by the elements of 𝒘𝒘𝑛𝑛. As shown in the figure, the output

neuron has a linear transfer function, as indicated in Chapter 1 for the case of a regression

problem. When calculating the N outputs of the full network shown in Figure 2.1, there

are N weight vectors, each corresponding to its associated output.

42

Figure 2.4: Portion of neural network corresponding to the nth output within multi-outputs

radial-basis network (RBN).

𝑦𝑦𝑛𝑛 = 𝒉𝒉 ∙ 𝒘𝒘𝑛𝑛 = �ℎ𝑞𝑞 ∗ 𝑤𝑤𝑞𝑞𝑞𝑞

𝑄𝑄

𝑞𝑞=1

 (2.3)

 Given the value of h, the calculation of the nth output 𝑦𝑦𝑛𝑛 is provided in Equation

2.3. When calculating the N outputs of the full network shown in Figure 2.1, there are N

weight vectors, each corresponding to a single associated output.

In regression problems, when multiple Gaussian functions are used and combined

as the network basis functions, the produced network function conceptually acts as a

curve (see Figure 2.5). The network output curve, which is represented by 𝑦𝑦𝑛𝑛 in Equation

2.3, results from a weighted combination of different Gaussian functions at different

space locations. Figure 2.5 shows an example for output curve 𝑦𝑦𝑛𝑛 produced from three

Gaussian functions (ℎ1, ℎ2, and ℎ3). Each function has its own weight 𝑤𝑤𝑞𝑞𝑞𝑞, in Equation

2.3, to change the peak value of the function.

43

Figure 2.5: RBN output curve resulting from multiple Gaussian functions.

Different radial-basis functions can be used, including the Gaussian function,

multi-quadric function, generalized multi-quadric function, inverse multi-quadric

function, generalized inverse multi-quadric function, thin plate spline function, and cubic

function (Buhmann, 2003; Press, 2007). Choosing the type of radial function is not a

critical issue because various functions provide comparable practical results on network

performance. One study (Powell, 1987) refers to the Gaussian function and the thin plate

spline function as typical options. Others (Moody & Darken, 1989; Poggio & Girosi,

1990) also specified the Gaussian function as the most commonly used radial basis

function when solving regression problems. In addition, the Gaussian function is a

localized function, meaning its output monotonically decreases with distance from its

center (i.e., ℎ(𝑥𝑥) → 0 at �𝒙𝒙 − 𝒖𝒖𝑞𝑞� → ∞), while all the other functions, except for the

inverse multi-quadric function, monotonically increase where h(x)→ ∞ at �𝒙𝒙 − 𝒖𝒖𝑞𝑞� →

∞. Therefore, the Gaussian function provides a reasonable, globally stable, and fast

method for interpolation with tracking errors converging to a neighborhood of zero

(Sanner & Slotine, 1992). In other words, it is a bounded function that provides output

44

between 0 and 1, which produces a stable response. Hence, this work will consider the

Gaussian function as the typical basis function in all proposed approaches.

In terms of the number of hidden layers, it is better to use one layer and work on

changing the number of basis functions (neurons) and/or training data sets until the best

performance is achieved. That is because the literature indicates that one hidden layer is

capable of handling any practical complex problem (Bishop & Nasrabadi, 2006;

Wasserman, 1993). More complex problems need more neurons in the hidden layer and,

rarely, more hidden layers. There is currently no theoretical reason to use neural networks

with more than one hidden layer. The reasons for not using more than one hidden layer

are as follows:

1. Adding more hidden layers makes the network performance unstable and subject to

more noise because there are more neurons and connections between the layers. In

addition, the resulting model becomes more complex and specialized for the training

cases (i.e., more potential for an over-fitting problem). That, in turn, reduces the

general network prediction ability for new unseen inputs (i.e., inputs other than the

training cases).

2. There is more potential to reach a local optimization solution when the network has

two or more hidden layers because there are more connections to be found at different

layers. Consequently, the locally optimized network has poor performance.

Given the structure described thus far, the network must be trained in order to

determine the following parameters while maximizing the accuracy of the network: 1) the

number of basis functions Q, 2) the basis function centers U, 3) the basis function

widths 𝝈𝝈 = [𝜎𝜎1 𝜎𝜎2. . .𝜎𝜎𝑄𝑄], and 4) the output weight matrix W.

45

2.2. Training techniques in radial-basis network (RBN)

In this section, typical network training processes are presented for setting the

values of different network components. The processes are called the fast-training

method and the full-training method. After the discussion of these processes, methods to

improve the network generalization during the training process are illustrated. Then,

techniques for setting the network parameters are provided in subsections under each

parameter’s name.

In the training process, known sets of input(s) (x) and their corresponding

output(s) (𝒕𝒕 = [𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑀𝑀]) for M training cases are used to set and estimate the

network parameters. In the typical training process, all network parameters are either set

by optimization or are predefined heuristically. Typically, there are two types of training

processes for designing an RBN. The first method has w parameters as the design

variables. The second method has w, U, and 𝝈𝝈 as the design variables. Each one has its

own advantages and drawbacks. The number of basis functions Q in both methods is set

by the user.

2.2.1. Fast training method

The first type of training process, called the fast training method, finds the

connection weight (w) values (Equation 2.4) (Broomhead & Lowe, 1988; Wasserman,

1993). After the values of w are initially assigned to random small values, usually

between -1 and 1, the optimization in Equation 2.4 is solved by adjusting the values of w

until the sum-squared error (SSE) reaches the minimum. The optimization has been

proven to always find a global solution because of its quadratic-based basis functions

46

(Broomhead & Lowe, 1988; Looney, 1997). This problem is typically solved using the

gradient-based numerical optimization methods because the quadratic cost function (i.e.,

the error) is at the minimum where the gradient is zero. Given the significance of the

initial guess with any gradient-based optimization method, improper selection of initial

values for w can result in relatively slow convergence.

 Minimize: 𝑓𝑓(𝒘𝒘) = ∑ (𝑡𝑡𝑚𝑚 − 𝑦𝑦𝑚𝑚)2𝑀𝑀
𝑚𝑚=1

 = � (𝑡𝑡𝑚𝑚 − (�ℎ𝑚𝑚𝑚𝑚 ∗ 𝑤𝑤𝑞𝑞𝑇𝑇
𝑄𝑄

𝑞𝑞=1

))2
𝑀𝑀

𝑚𝑚=1

(2.4)

In Equation 2.4, 𝑡𝑡𝑚𝑚 represents the true output value for the mth training case. The

term true output is used to distinguish the output provided by preconceived training data

from output calculated by a complete and trained neural network. 𝑦𝑦𝑚𝑚 represents the

predicted output from the network for the mth training case. Thus, ℎ𝑚𝑚𝑚𝑚 is the qth basis

function output for the mth training case. 𝑤𝑤𝑞𝑞 is the weight value for the qth basis function.

For network parameters U and 𝝈𝝈 , the user usually defines them heuristically prior

to solving Equation 2.4. Basically, the centers in U are set to the inputs of some randomly

selected training cases, and the basis functions widths (𝝈𝝈) (i.e., Gaussian spreads) are

heuristically set to a small value (e.g., 0.1). This training method sometimes works well

for applications with a relatively small number of training cases because the network

could be designed to have all training cases as centers in its design (i.e., 𝒖𝒖𝑞𝑞 = 𝒙𝒙𝑞𝑞). When

a large number of training cases exists (thousands of cases or more), the user heuristically

sets the centers U that are drawn randomly from a subset of the input training set

(Looney, 1997; Wasserman, 1993).

47

On the other hand, the method generally experiences poor performance due to the

heuristic or random selection of the network parameters. Certainly, any algorithm with

heuristic parameters offers opportunities for improved effectiveness, if such parameters

are optimized in some sense. There is always a problem with the accuracy obtained by

random selection of U because the randomly selected centers do not provide enough

distribution to cover the whole training space in order to allow proper network

performance. In addition, two or more training cases that are overlapping (i.e., located

close to each other) might be selected, which will not produce a model with small error.

That is because some inputs will be too close to two or more centers at the same time,

and the corresponding outputs will be distorted. In other words, some of the selected

cases are linearly dependent, and all of them can be replaced by one case. The problem

with this condition is also called the ill-conditioned problem. In addition, the random

selection of the basis functions’ centers can inadvertently exclude significant training

cases that cover part of the spanned space. The method of selecting the centers of U to

equal the inputs of all training cases (i.e., Q=M) is not necessarily an effective alternative

because it produces an over-fitting issue, which will be discussed in a later subsection.

The resulting network predicts the training (on-grid) cases accurately but fails to predict

off-grid points with proper accuracy. Furthermore, this approach results in ill-conditioned

problems. In summary, the fast-training method has the advantage of computational

speed, especially when there is a small number of training cases, but new methods are

needed for defining network parameters more effectively.

48

2.2.2. Full-training method

The second method, called the full-training method, finds all network parameters

w, U, and 𝝈𝝈 that minimize the sum-squared error (SSE) (Equation 2.5). Thus, fewer

parameters are set heuristically or randomly, as compared to the fast-training method.

The method uses the same procedures and optimization formulation as the first training

method. All design variables are initially set to random values before optimization is run.

The problem is formulated as follows:

 Minimize: 𝑓𝑓(𝒘𝒘,𝑼𝑼,𝝈𝝈) = ∑ (𝑡𝑡𝑚𝑚 − 𝑦𝑦𝑚𝑚)2𝑀𝑀
𝑚𝑚=1

 = ∑ (𝑡𝑡𝑚𝑚 − (∑ ℎ𝑚𝑚𝑚𝑚 ∗ 𝑤𝑤𝑞𝑞𝑇𝑇
𝑄𝑄
𝑞𝑞=1))2𝑀𝑀

𝑚𝑚=1

(2.5)

Despite the deterministic benefits, this method yields a network that often requires

an excessive number of basis functions for proper accuracy. This is due to the random

selection of the number of basis functions and their centers, which can result in centers

that are located outside the training space or that cover a partial area in the training space.

Hence, more basis functions are required to achieve proper training accuracy. This in turn

makes the network run slower after the training is completed. In the case of applications

with a relatively large number of training cases, a large number of outputs, or both

together, the method also experiences training issues and is computationally costly due to

the large number of design variables. Consequently, the use of this method in this work

for prediction of large-scale problems like the digital human modeling (DHM) motion is

not applicable. We could, however, use the fast-training method because of its

advantages for applications with relatively small numbers of training cases and its cheap

computations. On the other hand, novel approaches will be added to that design in this

49

work, especially the randomly assigned parameters. All such approaches will be

discussed in Chapter 3.

In addition to the aforementioned limitations, both traditional training methods

often have over-fitting or under-fitting issues in many applications. Basically, both

approaches can be significantly inaccurate. This is because the number of basis functions

is heuristically chosen, which leads to more or fewer basis functions than the network

needs to predict a problem accurately. A detailed description of the desired network for

optimal design, as well as the under- and over-fitting issues, is discussed in the next

section, which provides the crux of the proposed new algorithms.

2.2.3. Network generalization

A third approach to network training involves improving the network

generalization. Generalization is the network’s ability to provide proper prediction for

new cases that have never been used to train the network. The typical training methods

produce models that have poor accuracy due to the use of SSE as the cost function in the

optimization problem. If the SSE is minimized for the training cases without monitoring

the network performance when predicting new test cases, the resulting trained network

will have what is called poor generalization. The test cases are cases that are not used in

the training process. The network is properly generalized if it predicts the test cases with

accepted accuracy. The accepted accuracy value is determined based on the application

or on the performance of the network relative to that of other prediction models. The

network prediction’s accuracy is measured by calculating the error when it predicts the

50

test cases. This is called the test error. Acceptable generalization is produced when the

test error is minimal (i.e., acceptable for the predicted application).

Figure 2.6 shows a conceptual illustration of three simple network regression

curves produced by minimizing the SSE of the training points shown in the figure. Curve

(b) represents the optimal one with good generalization; the curve passes smoothly

through the training cases with small error. On the other hand, curve (c) presents a

network prediction curve with poor generalization. The curve in the Figure 2.6 passes

through most of the training points. Consequently, it has minimal on-grid training error,

but has spikes and sharp transitions between the training points (large off-grid test error)

that result in reduced accuracy. This case is called over-fitting, which indicates that the

network uses a more complex curve (i.e., higher-order polynomial) than it should. Poor

performance is also seen with curve (a), where the regression curve is simpler than

needed for the problem. This case is called under-fitting because the produced

polynomial is below the order required to fit the problem training data (i.e., the system

has high bias). This issue of under-fitting happens because either the used model is

simple or the available training data are inadequate.

Figure 2.6: Example for fitting training data using three curves that represent cases of a)

under-fitting, b) optimal fitting, and c) over-fitting.

51

Optimal design is difficult to find in many practical applications for one or both of

the following reasons: 1) there is an insufficient number of training cases to provide

enough insight about the underlying structure of the predicted output, and 2) the

prediction model has poorly defined parameters, leading to poor performance. Some

applications have a reduced number of training cases that is not enough to be

appropriately predicted by typical prediction models. Consequently, researchers have

been trying to find the best methods to minimize testing error produced from models like

ANN to improve the generalization in application prediction under any given conditions.

Hence, many methods have been introduced to reach that goal by improving ANN

training processes and/or selecting their parameters. The methods that are concerned with

the training optimization problem are summarized in this section, while the methods

concerned with the network parameters are presented in the next subsections under

different categories.

Well-known methods for improving the network generalization by minimizing the

approximated network testing error include: 1) early stopping, 2) cross-validation, and 3)

regularization. All methods target reduction of over-fitting in the training process by

preventing the SSE from reaching zero, as well as providing the minimum possible

estimate for the general test error for the used model by calculating the error produced

from the prediction of a few test cases. The early stopping method divides the training

data into two parts. One large training part usually includes 60-90% of the original

training cases and is used to train the network. The other small test part (also called the

tuning part) is used to test the network performance during the training process. The

training process, using either Equation 2.4 or 2.5, is performed many times, each with

52

different values for the network parameters (i.e., different U and 𝝈𝝈) and/or numbers of

basis functions. Each time the network is created, it is tested using the cases in the tuning

part (i.e., the tuning error is calculated). The training process stops when the tuning error

does not change, starts increasing, or has only slight changes over successive iterations.

With the cross-validation method, the training data is divided into small portions,

usually 5 or 10 groups of equally sized data points. All except one portion are used as

training cases, and the remaining portion is used as tuning to evaluate the test error. With

the same network parameters setting, every group of data is used once as tuning data

while the remaining groups are used to train the network. As in the early stopping

method, the training process is repeated many times, each time with different network

parameters and/or numbers of basis functions. The selected network is the one with

smallest average error over the errors produced when using each group as tuning data.

Cross-validation differs from early stopping in that all training points are eventually used

in the training and tuning process, while the early stopping method assigns a specific

portion of the training cases to always be used to test and tune the network. More details

about the early stopping and cross-validation methods are provided in the literature

(Duda, Hart, & Stork, 2012).The two methods share some limitations, which include the

following: 1) the training process sometimes terminates prematurely with poor network

design because the optimization is terminated after the tuning error increases or becomes

stuck at some apparently minimum value (i.e., local solution), 2) the methods usually do

not provide proper results with applications where limited training data are available

because splitting the data to have the tuning part could produce poor trained model with

the remaining portion of the data, and 3) the selected portion of tuning cases might not be

53

a good representation of the actual testing error (the network might be adapted for very

small tuning error but provide large error for the actual test cases).

A third method involves adding a regularization part to the objective function

(Bishop & Nasrabadi, 2006; Haykin, Haykin, Haykin, & Haykin, 2009), which is also

called the weight decay. Connection weights w are added to the cost function, as shown

in Equation 2.6, where the optimization becomes multi-objective optimization. Bartlett

(1998) confirms that the smaller the weight’s w values are, the better generalization

performance the network tends to have. Therefore, their values are controlled and

monitored by adding them as a penalty to the cost function. The resulting network is still

flexible enough to handle the predicted problem with relatively small training and testing

errors.

 Minimize: 𝑓𝑓(𝒘𝒘,𝑼𝑼,𝝈𝝈) = ∑ (𝑡𝑡𝑚𝑚 − 𝑦𝑦𝑚𝑚)2𝑀𝑀
m=0 + 1

2
∑ (𝑤𝑤𝑞𝑞)2𝑄𝑄
𝑞𝑞=1 (2.6)

This weight decay approach, however, sometimes fails to solve the over-fitting

problem because the regularization (penalty) part in the cost function does not have

enough weight to largely affect the whole cost function in the optimization. As a result,

the weights w stay large in the final optimal design. Moreover, the network performance

could be poor because of other issues like under-fitting, and thus adding the

regularization part has no benefits. Consequently, this work will develop other methods

for designing new RBN with optimal performance, and with minimal over-fitting and

under-fitting issues. This design will be discussed in Chapter 3.

While the three formulations discussed above address overall approaches to

training networks, there are a variety of specific methods for setting method parameters,

U and 𝝈𝝈 , and these techniques also play a critical role in designing networks.

54

2.2.4. Techniques for setting network parameters

Despite the drawbacks of the aforementioned training processes, some scholars

have introduced methods for finding the critical network parameters. These parameters

include the basis functions centers (U) and Gaussian widths (𝝈𝝈). It is important that both

parameters be selected carefully for better network performance. Therefore, this section

provides a summary of the main techniques introduced in the literature for setting these

parameters.

2.2.4.1 Basis functions centers

Besides the methods used for setting 𝑼𝑼 in the aforementioned typical training

processes, recent methods have been proposed to find the best possible values of 𝑼𝑼

depending on its physical meaning in the network design. The basis functions centers,

which are the rows in matrix (𝑼𝑼 = �𝒖𝒖1 𝒖𝒖2 …𝒖𝒖𝑄𝑄�
𝑇𝑇
), are the locations of the centers of

basis functions. Distribution and selection of these centers is crucial in order to cover the

whole training space, and in order to provide adequate accuracy. The main methods are

summarized as follows:

1. The density estimation method, which sets U in the training space at locations with

high densities (i.e., places with more concentrated training cases). Some drawbacks

include: a) the selection of centers is not guided by measuring the training SSE,

which can lead to large test error, and b) the resulting centers are representative of the

feature space density, but do not guarantee the ability to capture the structure that

carries discriminatory information for the predicted problem. In other words, the

method can leave important and unique points unselected because of their low

55

densities. More details about this method are provided in the literature (Haykin et al.,

2009).

2. The k-means clustering algorithm, which involves clustering the training data into

groups. The number of k clusters is determined in advance by the user, and the

algorithm clusters the similar training points (cases) based on the distances from each

point to the cluster centers. Then, the produced clusters are set as U. The k-means

method experiences drawbacks similar to those of the density estimation method.

More details about this topic are provided in the literature (Haykin et al., 2009).

3. The orthogonal least square (OLS) algorithm, which involves selection of the training

cases that contribute the most in the network-predicted output as basis functions

centers. The algorithm keeps adding basis functions one at a time until the

termination criterion is satisfied. Its algorithm terminates when the sum of the

contributions from all added basis functions is close to 1. The method is considered a

fully supervised method because it tracks the error reduction in the produced model.

It avoids the problems of the first two methods. The OLS method is considered a full-

training method that eventually finds w after U is set. More details about this topic are

provided in the literature (Chen, Billings, & Luo, 1989).

From these methods for setting U, there is an opportunity for the OLS method to

be included with some modifications in a new training approach. The advantages of the

OLS method allow for successful incorporation in a more robust and generalized RBN

design. On the other hand, more innovative procedures for the OLS method termination

criterion are needed. That is because the method was originally introduced for

applications with large numbers of training cases, on the scale of thousands or hundreds

56

of thousands, such as signal processing problems. The new approach, which is introduced

in Chapter 3, employs the OLS with necessary modifications to facilitate more

generalized performance for any application, especially those with limited numbers of

training cases.

2.2.4.2 Basis function spreads

The radial-basis function width, 𝜎𝜎, (or Gaussian spread) is a property of the basis

function that determines the area covered by the function. Usually, the 𝝈𝝈 values are found

by optimization, as in the full-training method in Section 2.2.2, or set heuristically to a

fixed small number (i.e., 0.1) or using the root-mean square distance (RMSD) between

the centers of the basis functions. The values of 𝝈𝝈 represent the function variance, which

is essentially a measure of how disperse a set of numbers is. The larger the 𝝈𝝈, the more

scattered the function. For example, Figure 2.7 shows three Gaussian functions with

different 𝝈𝝈 values. When the function has larger 𝜎𝜎, as with the red-colored function, the

function will cover more area in the space. That in turn reduces the existence of empty

spaces. That is, the function will still provide output at a distance further from its center

before it vanishes. On the other hand, such a function could produce less accurate results

for some inputs because it covers a large area that could lead to extreme overlapping with

other basis function(s) at those inputs. A basis function with smaller 𝜎𝜎 , like the green-

and blue-colored functions in Figure 2.7, provides highly accurate results within ranges

close to its center because it covers a small area in the training space where it only

responds to inputs located at a distance close to its center. Using such function(s),

however, leaves the training space with more uncovered areas, which could produce zero

outputs for the inputs that are located at these uncovered areas.

57

Figure 2.7: Three Gaussian functions, where the red-colored one has larger width 𝜎𝜎 than

the other two functions.

Ideally, when an input is located at a point within one basis function, that basis

function is the only one fired (activated), producing the output corresponding to the

received input. Practically, many inputs are located in the space at points where two or

more basis functions are fired, like the areas in Figure 2.7 with two or more overlap

functions. Overlapping between neighboring basis functions is necessary to cover all the

training space. That is especially needed when the problem has multi-dimensional inputs,

which is the typical case in most problems. In general, the width 𝜎𝜎 should be neither too

large nor too small for the network to cover all the training space while achieving the

most appropriate accuracy. In addition, using the same 𝜎𝜎 value for all basis functions

cannot produce highly accurate and appropriate models because each basis function deals

with a different segment (space size) of the training space in terms of both the received

input and the predicted output.

Many software packages and methods for RBNs use a fixed value for all 𝝈𝝈 in

their network designs. Reasons include, but are not limited to: 1) they ignore the

58

importance of having different values for 𝜎𝜎 at different basis functions and depend only

on setting up other network parameters in designing the prediction model, and 2) it is

costly in terms of time to include 𝝈𝝈 in optimization. Therefore, most of these methods

leave 𝝈𝝈 as an option for the user to define heuristically. Some researchers also claim that

finding 𝝈𝝈 by optimization is not helpful for the training process because: 1) the statistical

meaning of 𝝈𝝈 is known and set in more robust techniques like root-mean square distance

(RMSD) (Saha & Keeler, 1990; Wasserman, 1993), and 2) the issue of over-fitting is

more likely to exist if both 𝝈𝝈 and w are optimized. Consequently, we can incorporate

mixed approaches in setting the values of 𝝈𝝈 by setting them to an initial design that

depends on heuristics techniques like RMSD. Then, their optimal values are found by

optimization. More details for the proposed mixed approach are provided in Chapter 3.

2.3. Discussion

The RBN that is used in this work and its various training techniques are

illustrated in this chapter. The significance of various RBN elements and techniques in

setting their values are also highlighted. Although RBN is selected in this work for the

reasons itemized in the introduction of this chapter, it has deficiencies that open

opportunities for new and more robust and generalized design, especially for use in DHM

applications. These deficiencies are summarized as follows:

1. The fast-training method experiences poor performance due to the heuristic and

random selection of the network parameters. The use of the full-training method to

predict large-scale problems like the DHM motion is also limited due to the large

number of parameters and generalization issues in that method. Therefore, the

59

opportunity is to use a modified optimization approach within a new RBN training

process to overcome the limitations of both training approaches. The randomness in

assigning the network’s parameters is especially targeted in the new design, which is

presented in Chapter 3.

2. Except for the regularization method, none of the methods proposed to improve the

network generalization can be applied efficiently in applications with a reduced

number of training cases like those in the DHM. On the other hand, the regularization

method capability is not guaranteed in many applications. Thus, it is essential to

determine alternate methods for designing a new RBN with optimal performance and

minimal over-fitting issue, especially for applications with minimal training cases.

Such a design will be illustrated in Chapter 3.

3. The typical training approaches define the basis functions’ centers (U) heuristically.

Among the recent methods that have been proposed to find the values of 𝑼𝑼, the OLS

method has the most advantages. It is a full-training method that finds not just U, but

also the number of basis functions and output weights (w). The method was originally

introduced for applications with a large number of training cases, on the scale of

thousands or hundreds of thousands, such as signal processing problems. Therefore,

the new RBN design can include the OLS method with some modifications to its

termination criterion and its training setups to work properly for the intended

applications. Hence, the new design should work for all applications, even those with

a limited number of training cases.

4. The heuristic setup of the basis functions’ widths (𝝈𝝈) in the currently available

training methods and software packages limits the network’s flexibility to produce

60

highly accurate results in some applications. That requirement especially applies to

the applications we address in the course of this work. Based on the presented method

for setting 𝝈𝝈, we can incorporate mixed approaches to assign their values within a

multiple-stage-based training process. The approaches include the heuristic-based

RMSD approach to initiate the values of 𝝈𝝈. Then, the optimal values are found in

later stages by optimization.

5. The RBN cannot predict points that are out of the training space. The network cannot

provide accurate outputs when the input is outside the range of training data (i.e., no

extrapolation). This limitation, however, does not affect the targeted DHM

applications of this work because the extrapolation capability is not needed.

Applications like motion prediction involve known input limits, beyond which the

application either does not work or is invalid.

All proposed opportunities for the aforementioned deficiencies are considered in a

new methodology discussed in Chapter 3. The new methodology uses minimal heuristics

to allow for automation of the whole training process. Certainly, the new design

efficiency is achieved by offering methodologies for setting all necessary network

parameters that are task independent (i.e., the network parameters that are not task

related) to their optimal values. Heuristic approaches (or rule of thumb) are then used to

set other task-relative network parameters. With the new training algorithms, which will

be detailed in Chapter 3, the new RBN design can outperform other designs when applied

on applications with a reduced number of necessary training cases. Moreover, the high

performance of the new design is critical because it is applied to DHM motion prediction,

which requires prediction of hundreds of outputs from the same model.

61

62

CHAPTER III

NEW DESIGN FOR RADIAL-BASIS NETWORK WITH REDUCED TRAINING

SETS

3.1. Introduction

This chapter presents new methodologies for designing a radial-basis network (RBN)

with an optimal training process to improve the network performance (i.e., the most

possible accuracy in the predicted network outputs) for different applications. The

improved performance is especially applicable for those applications with reduced

available training data. Ultimately, this work points towards the use of artificial neural

networks (ANNs) for modeling dynamic human motion (Xiang et al., 2010), which

constitutes a regression problem with respect to neural networks. However, predicting

dynamic motion is a complex problem and can be computationally demanding.

Furthermore, simulations can be sensitive to changes in task parameters that extend

beyond anticipated bounds. This in turn presents a case where accumulating a large

number of data (training cases from which to learn) can be difficult. Thus, there is a need

for a neural network that can accurately model complex problems with minimal data. To

be sure, predicting human motion provides the motivation for this work. Nonetheless, in

keeping with the analogy of mimicking cognitive performance, there is a distinct need for

an ANN with improved performance, and responding to this need yields a tool with

potential application to a broad range of problems.

Fundamentally, ANNs provide a means of modeling large sets of data.

Conceptually, they provide a computational representation of how one takes in and

63

processes data—of how one learns. Consequently, potential applications are extensive.

However, as with learning in general, there are many facets to neural networks. There are

many ingredients, so to speak. Often, the challenge is not simply applying a network to a

particular problem, but determining the most appropriate components for a particular

problem in order to maximize computational speed and accuracy. In general, depending

on the type of ANNs used to predict a problem, one or multiple network parameters are

set up heuristically. Thus, the performance of the resulting trained network is vulnerable.

The work in this chapter steps through the process of designing a new ANN

specifically for problems with limited training data and with potential application to

digital human modeling. We contend that if selected properly, existing methods for

setting the network parameters can be integrated to provide a novel network that

outperforms current approaches with respect to computational speed and accuracy (for a

set number of training cases). Based on the RBN training process, the new design

involves multi-stage training techniques for automatically determining all network

parameters that are not problem specific.

This chapter presents the following specific contributions: 1) improved RBN

performance when predicting a task with any number of training cases, 2) a modified

orthogonal least squares (OLS) algorithm for determining basis function centers and

initial weighting factors, 3) integration of the OLS approach and an optimization-based

approach, and 4) automatic objective calculation of all network parameters. Note that the

OLS method is usually presented as an independent training process to replace the typical

RBN training process. Alternatively, we propose using a modified OLS method as one

64

component within the context of an overarching methodology for problems with minimal

training sets.

The rest of this chapter is arranged so the methods used in the new training

process are presented first. Then, experimental examples are illustrated to test the validity

of the new methodologies. Finally, discussions and conclusions for this chapter are

presented.

3.2. Method

The new RBN design involves a multi-stage training process for determining

necessary network parameters. This process involves four main components, as presented

in Figure 3.1, after training sets of inputs (x) and their corresponding outputs (t) are

provided. First, the network training inputs x are normalized using the standardization

approach. Secondly, preliminary values for the Gaussian spreads 𝝈𝑜 are set for all basis

functions using root mean square distance (RMSD). Then, the basis functions and their

centers U are automatically set using a new OLS method with a modified convergence

criterion. The preliminary values for connection weights 𝑾𝑜 are also calculated from the

OLS method. Finally, optimal values for W and 𝝈 are calculated by minimizing the sum

square error (SSE) over all training cases.

65

Figure 3.1: Flow chart for the steps of the new training process of the RBN design.

 The transformation of inputs, such that they all have similar ranges, helps to set

proper preliminary values for 𝝈𝑜 based on the RMSD method. Then, unlike the typical

OLS methods, all available training cases are traversed in order to select the ones that

have the most significant contributions in the outputs as the centers U of the network

basis functions. This in turn implicitly sets the number of basis functions as well as a

preliminary output weight matrix 𝑾𝑜. Furthermore, a novel double-termination criterion

for the OLS method is introduced to facilitate more robust use with varied applications.

The criterion guarantees the proper complexity for optimum computational speed and

accuracy, where a network’s complexity is proportional to the number of basis functions.

Unlike the randomly assigned initial guess in traditional training methods, the values for

𝝈𝑜 and 𝑾𝑜 are determined from RMSD and OLS, respectively, and are used as the initial

guess with the optimization process in order to improve convergence. U is excluded as a

66

design variable from the optimization, contrary to the traditional approach (Looney,

1997), because the OLS method is designed primarily to provide an adequate final U.

This integration of OLS and RMSD, with an optimization-based approach, is the primary

novelty of the proposed approach and has proven to be effective, as will be demonstrated

with a series of empirical and real-world problems.

3.2.1. Normalizing the input

 As a preprocessing step, normalization is performed to decrease the relative

variance of each element in the input x. In general, the normalization should be

performed in the ANN in both the training and testing phases for the following reasons:

1. Compressing inputs by normalization changes them all to be in a consistent range.

This step minimizes the bias within the ANN for one input feature over another

(Priddy & Keller, 2005) when calculating the RMSD (in Section 3.2.2). In the context

of the RBN, the basis functions are locally activated (i.e., each basis function is

activated to provide output only when x is located in specific region of the training

space where the function is located). Outputs from the basis functions are calculated

based on the distances between all inputs and their corresponding components in the

basis function center (Equation 3.1). Therefore, various types of inputs should have

similar dimensions, so that they all have the same importance in distance calculations.

ℎ𝑞 = exp [−

∑ (𝑥𝑖 − 𝑢𝑞𝑖)
2𝐼

𝑖=1

2𝜎𝑞
2

] (3.1)

where: ℎ𝑞: the output of the qth basis function.

 𝒙: vector that represents the network inputs (𝒙 = [𝑥1, 𝑥2, … , 𝑥𝐼]).

67

 𝒖𝑞: vector that represents the center of the qth basis function (𝒖𝑞 =

[𝑢𝑞1 𝑢𝑞2 𝑢𝑞3 … . 𝑢𝑞𝐼]).

𝜎𝑞: spread or Gaussian width of the qth basis function.

2. Input normalization is helpful for setting the centers of the basis functions in the RBN

for better network performance. In general, basis function centers are selected as the

inputs of some training cases. Hence, the training process is more efficient and

successful when the dimensions of these centers are the same, because overlapping

between basis functions will be consistent in all dimensions and for all centers (see

Figure 2.3). In addition, the locations and distances between adjacent centers are

organized and equally spaced, which produces a training grid with relatively evenly

distributed basis functions.

3. Normalization speeds up the training process (Priddy & Keller, 2005). Initiating the

training process with inputs that have the same scales improves its performance. It

finishes faster, because extracting the problem patterns, which are the inherent

relationships between various problem inputs and outputs, is easier with inputs that

have small variances.

There are, of course, many approaches to normalization: statistical normalization,

standardization, min-max normalization, sigmoidal normalization, energy normalization,

etc.; and all methods improve the network training process. For this work, a

standardization method is used, because it provides small feature variances and the same

normalized ranges for all input features. Standardization compresses all the values to be

between -1 and 1. Unlike other approaches, standardization retains the sign of the original

input, thus allowing the trained network to be sensitive to changes in sign for the input

68

features. This is critical for general applications, given that different features can

represent vastly different physical entities.

Equation 3.2 shows the standardization equation applied to the ith component of x,

where 𝒙𝑚 is the mth training case. The standardized value of the ith component in the mth

training case 𝑥̅𝑖
𝑚 is determined by dividing the original value 𝑥𝑖

𝑚 by the maximum

absolute value of the ith component, 𝑥𝑖𝑚𝑎𝑥
, as shown in Equation 3.3, where M is the

number of training cases. The consequent transformed value is always between -1 and 1.

𝑥̅𝑖

𝑚 =
𝑥𝑖

𝑚

𝑥𝑖𝑚𝑎𝑥

∈ (−1,1) (3.2)

 𝑥𝑖𝑚𝑎𝑥
= max [|x𝑖

1| , |x𝑖
2| , |x𝑖

3| , … , |x𝑖
𝑀|] (3.3)

The process of input normalization using standardization is fully automatic in this

work, regardless of the application. The normalization is automated for both training

mode, when the network receives the training inputs (i.e., training data) in the training

process, and testing mode, when the trained network receives new test inputs (i.e., test

data). The normalization in the testing mode is performed using the values, 𝑥𝑖𝑚𝑎𝑥
 is

specific, that are found in the training mode.

3.2.2. Setting the basis function spreads

The radial basis functions spreads (i.e., widths) 𝝈 have a significant impact on

network accuracy, as they define the area covered by individual basis functions. In

typical training approaches, the spread values are treated as design variables to be

optimized in the training process. Other approaches set all the basis functions spreads to a

fixed small value (e.g., 0.1) in order to reduce the computational time in the training

69

process. The proposed process in this work, however, uses a new mixed approach in

setting 𝝈 to the optimal values. The RMSD method is first used to assign preliminary

spread values 𝝈𝑜. Then, the final 𝝈 values are found by optimization. This section

summarizes the RMSD component of the proposed methodology, and the use of

optimization is discussed in Section 3.2.4. Note that well-selected values for 𝝈𝑜 are

especially necessary not only for defining effective basis functions but also for finding

the proper basis functions centers U, as discussed in Section 3.2.3.

Each element in 𝝈𝑜 is determined based on the RMSD between each center and

the closest neighboring basis function center (Saha & Keeler, 1990; Wasserman, 1993),

which is shown in Figure 3.2. Equation 3.4 represents the calculation of the RMSD (i.e.,

Euclidean distance) for the Gaussian spread σ𝑗
° of the jth basis function, which is the

difference between a center 𝒖𝑗 and its closest neighbor 𝒖𝑗,𝑘. I is the dimension of the

input vector x. In order to calculate the RMSD for each basis function, in which its center

(𝒖𝑗) could be set using any training case as will be discussed in the next step of the

training process (Section 3.2.3), it is assumed in this step that all training cases are

centers for basis functions. In other words, the calculations of this step assume that there

are 𝑀 basis functions, and their spreads 𝝈𝑜 need to be calculated. Thus, the step of

setting 𝝈𝑜 assigns every training case to have its own preliminary spread σ𝑗
°.

Consequently, there are 𝑀 preliminary spreads as candidates for their corresponding

basis functions, but typically fewer basis functions (𝑄 < 𝑀) are selected in the next step.

70

Figure 3.2: Two-dimensional plot for the root mean square distance (RMSD) between

two neighboring basis functions.

σ𝑗
° = RMSD = √∑(𝑢𝑗𝑖 − 𝑢𝑗,𝑘𝑖)

2
𝐼

𝑖=1

 (3.4)

By determining 𝝈𝑜 with Equation 3.4, overlapping between adjacent centers is

minimized. Each basis function contributes more to the neural network for inputs closer

to its center than to any other centers. The closest center 𝒖𝑗,𝑘 is the normalized input

vector for the kth training case (𝒖𝑘 = 𝒙̅𝑘) with the smallest Euclidean distance among all

M-1 centers from the center 𝒖𝑗, which is the normalized input in the jth training case

(𝒖𝑗 = 𝒙̅𝑗). Once all the Euclidean distances are calculated and saved in an array, the

smallest distance is identified through direct search.

71

The distance-based approach of setting the preliminary spread values 𝝈𝑜in this

work gives larger σ𝑗
° for the basis functions with further centers and vice versa. The next

step is to set the basis function centers (U) by selecting the important training cases based

on their contributions (importance) in the network predicted output(s).

3.2.3. Selection of basis function centers

The matrix of basis function centers 𝑼 = [𝒖1 𝒖2 …𝒖𝑄]
𝑇
 is selected based on the

orthogonal least square (OLS) method proposed in the literature (Chen, Cowan, & Grant,

1991), but with modifications to the method for improved performance. This section

summarizes the traditional OLS method and details new enhancements.

As one of the important network parameters to be selected, the basis function

centers (locations of the basis functions) in the RBN are generally selected as a subset of

random size from the training cases (detailed in Chapter 2). The reason for selecting the

centers from the training cases is that the RBN is designed to produce its output(s) based

on local activation of the closest basis functions to the network input (Equation 3.5).

y = ∑ exp [−
∑ (𝑥𝑖 − 𝑢𝑞𝑖)

2𝐼
𝑖=1

2𝜎𝑞
2

]

𝑄

𝑞=1

∗ 𝑤𝑞 (3.5)

In Equation 3.5, y is the network output, Q is the number of basis functions, 𝑥𝑖 is

the rth input in the input vector, 𝑢𝑞𝑖 is the ith element in the vector of the qth center (the qth

row in the matrix 𝑼), 𝜎𝑞 is the Gaussian spread of the qth basis function, and 𝑤𝑞 is the qth

output weight.

With random selection of a subset from the available training cases to be set as

basis function centers, important training cases might be left out of the training space.

72

This, in turn, would leave a portion of the training space uncovered by any basis function

or poorly explained (predicted) by the network. Moreover, noisy training data might be

included in the selected centers, which would reduce the network output accuracy, even if

the network were well-trained. Therefore, methods like the orthogonal least square

method (OLS) (Chen, Billings, & Luo, 1989) and the k-means clustering method

(Haykin, Haykin, Haykin, & Haykin, 2009) are used to consider the importance of

various training cases when selecting the basis function centers. This work uses the OLS

method for the following reasons:

1. The OLS method has a better approach for the setting of its heuristically defined

parameter than that in the k-means method.

2. The k-means method is performed with no consideration for the network performance

(i.e., without testing the network’s errors). The method formulates the basis function

centers based on clustering various training cases depending on the distances between

them. Clustering the data might result in losing some of it and might increase the

error in actual testing because of using clustered centers that might not be distributed

to cover the whole training space to produce appropriate accuracy. In contrast, the

OLS method has a termination criterion that is directly related to the network

performance by calculating the contribution of each training case in the predicted

network output for all training cases.

3. The k-means method does not help draw any conclusions about the importance of a

specific training case or the task inputs because the method produces clusters that are

used as basis function centers. On the other hand, the OLS method maintains the

73

selection of centers from the original training data based on a direct relationship with

their contributions to the network output.

Orthogonal least square (OLS) method overview

 In general, the OLS method determines which training cases are most significant.

This is done by formulating an error function that is used to evaluate (score) each

normalized training case. Then, training cases with the highest scores are selected and

provide the locations of the basis function centers 𝑼. The number of selected training

cases is 𝑀𝑠 ≤ 𝑆, so the dimension of 𝑼 is 𝑀𝑠 × 𝐼. 𝑆 is a randomly selected subset number

of cases of the complete training set (M). The OLS algorithm first designs an initial

network using just a single basis function that has a center equal to the normalized input

of a training case. This initial training case is selected as the training case that results in

the minimum error when predicting the output of all training cases (i.e., the case with the

highest score). Then, additional basis functions are included one at a time, the error is re-

evaluated, and the process is repeated iteratively until a criterion based on the error is

satisfied. With each iteration, the additional basis function is transferred to a space where

it becomes orthogonal to all previously added basis functions, in order to calculate the

contribution of each basis function in the network predicted output independently. The

OLS also implicitly determines the preliminary values for the output weight vector 𝒘𝑜.

 As suggested earlier, the original OLS method is used typically as an independent

training process for RBN. This work, however, uses OLS within a new multi-stage

training process. In the new process, the OLS method is mainly used for setting 𝑼. Unlike

typical training approaches, setting U using the OLS is not performed randomly. Rather,

it considers the relative importance of the training cases when selecting U and inherently

74

the most appropriate number of basis functions. The proposed advancements include 1) a

novel double termination criteria and 2) use of all M training cases within the OLS

algorithm, rather than just a subset S of the complete training set. Unlike the original

OLS, the new design is mainly introduced for applications with a limited number of

training cases. Thus, inclusion of all training cases in searching for the most contributed

cases can help in better selection of the most necessary basis functions and their centers

U, and eventually fewer heuristics in the training process. The new termination criteria,

as will be shown later, guarantees the termination of the OLS procedures with a number

of basis functions closest to the optimal for any application.

Algorithm procedures

 The first step with the OLS method is to extract the columns of an orthogonal

matrix for use when developing the basis functions. This is done in order to separate the

significance (contribution) of each individual training case (i.e., different basis functions

are correlated), given that inputs of the training cases are used as basis function centers.

For simplicity, the network is assumed to have scalar output, denoted by 𝑦, for the

calculations in the rest of this section. When multiple outputs exist, the OLS calculations

are found for each output separately, and then the error scores are averaged over all

outputs. For a problem with single output, Equation 3.6 segregates the vector of exact

(true) output from all M training cases 𝒕 = [𝑡1, 𝑡2, … , 𝑡𝑀]𝑇 into the sum of the predicted

network 𝒚 and the error e. Note that with the proposed modification, all available M

training cases are eventually used to search through during the iterative process, but all M

training cases are not necessarily used as basis functions (𝑀𝑠 ≤ 𝑀). y is further

segmented in Equation 3.7, where 𝑯 = [𝒉1𝒉2 …𝒉𝑀] (the dimension of 𝑯 is 𝑀 × 𝑀) is a

75

matrix representing the outputs from the M basis functions for the M training cases. 𝒉𝑖 =

[ℎ1 ℎ2 …ℎ𝑀]𝑇 is a vector that represents the ith basis function outputs, where each output

is produced when the corresponding training case is received by the network. 𝒘 =

[𝑤1 ……𝑤𝑀]𝑇 is a vector of output weights from all M basis functions.

 𝒕 = 𝒚 + 𝒆 (3.6)

 𝒚 = 𝑯 ∙ 𝒘 (3.7)

 The next step in the OLS algorithm involves using QR-decomposition (Golub &

Van Loan, 2012) to transform the rows of the 𝑯 matrix in Equation 3.7 into a set of

orthogonal basis vectors. This process is shown as follows:

 𝑯 = 𝒁𝑨 ⟹ 𝒚 = 𝒁𝑨 ∙ 𝒘 (3.8)

𝑨 = [

1 𝛼12 ⋯ 𝛼1 𝑀𝑠

0 1 ⋱ ⋮
⋮
0

⋯
⋱
0

𝛼 𝑀𝑠−1 𝑀𝑠

1

]
(3.9)

The decomposition of 𝑯 produces an orthogonal matrix 𝒁 = [𝒛1, 𝒛2, … , 𝒛𝑀],

where 𝒛𝑖 = [𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝑀]𝑇, and an upper triangular matrix 𝑨, which is shown in

Equation 3.9. 𝒁 is then used to calculate 𝒈 ∈ 𝑅𝑀, which is a vector of the OLS solutions

for the M training cases. 𝒈 is defined using the Gram-Schmidt method (Björck, 1967), as

shown in Equation 3.10, with its scalar form shown in Equation 3.11. The significance of

𝒈 is that it is used to calculate the contribution of each training case in reducing the

network prediction error. In the new produced orthogonal space, 𝒁 and 𝒈 represent the

orthogonal basis functions and their weights (scales), respectively, to calculate the

network output 𝒚, as will be shown next.

 𝒈 = (𝒁𝑇𝒕)/(𝒁𝑇𝒁) (3.10)

http://en.wikipedia.org/wiki/Upper_triangular_matrix

76

𝑔𝑖 =

𝒛𝑖
𝑇𝒕

𝒛𝑖
𝑇𝒛𝑖

, 1 ≤ 𝑖 ≤ 𝑀 (3.11)

 The space spanned by the original basis functions, which are not orthogonal to

each other and are represented by 𝑯 and 𝒘 (Equation 3.7), is the same space spanned by

the new orthogonal basis functions, represented by Z and 𝒈 in Equation 3.12. Unlike the

original basis functions, the contribution of each orthogonal basis function when

producing 𝒚 can be calculated independently. Since the error 𝒆 is usually not known a

priori (Equation 3.6), it can be minimized by maximizing the predicted (i.e., explained)

part of the true output 𝒕 variance introduced by the orthogonal basis functions Z. The

explained variance of 𝒕 is found and maximized by the Gram-Schmidt method.

𝒆 represents the unexplained variance of 𝒕 that cannot be found, which is responsible for

the error that occurs in all prediction models. The explained 𝒕 variance is maximized by

selecting the training cases, based on Z and 𝒈, that have the maximum contributions to

create the new orthogonal basis functions in the network model.

 𝒚 = 𝐙 ∙ 𝐠 (3.12)

Again, using the Gram-Schmidt method, each 𝑔𝑖 and 𝒛𝑖 are substituted into

Equation 3.13 to calculate what is called the error reduction ratio [𝑒𝑟𝑟]𝑖 , which is used

to determine which training case should be used to set the next basis function and its

center, 𝒖𝑖. The value [𝑒𝑟𝑟]𝑖 represents the contribution of the ith training case in the 𝒕

explained variance. In other words, [𝑒𝑟𝑟]𝑖, which is proportional to 𝑔𝑖 and 𝒛𝑖, represents

the increment to the network accuracy introduced by the ith training case.

[𝑒𝑟𝑟]𝑖 =

𝑔𝑖
2𝒛𝑖

𝑇𝒛𝑖

𝒕𝑇𝒕
 (3.13)

77

 The training case with the highest [𝑒𝑟𝑟]𝑖 is selected as the next most important

basis function. The normalized input associated with that case is then used as the center

for its corresponding basis function (𝒖𝑞 = 𝒙̅𝑖).

The OLS method iterates to calculate 𝒛𝑖, 𝑔𝑖, and [𝑒𝑟𝑟]𝑖 , which are used to

determine a new center with each iteration until the termination criterion is satisfied. The

criterion is typically satisfied when the sum of the error reduction rates is close to 1, as

shown in Equation 3.14. Then, the final number of selected significant training cases

𝑀𝑠 ≤ 𝑀 is the final number of basis functions.

1 − ∑[𝑒𝑟𝑟]𝑗

𝑀𝑠

𝑗=1

< 𝜀 (3.14)

The tolerance value (𝜀) is set heuristically to a small value (e.g., 0.01).

 Although it is efficient in many applications, the original termination criterion

shown in Equation 3.14 can lead to poor results in others. The method was originally

designed for signal processing applications that usually include thousands of training

cases, many of which are highly dependent on each other. Poor results are especially

prevalent when the output has large variance (i.e., is distributed over a large scale). In

such case, the OLS might terminate before it achieves enough reduction in the variance.

The termination criterion terminates the method earlier than it should. The underlying

concept of the OLS method is to reduce the training error by maximizing the explained

variance in the true output (i.e., decreasing the error caused by the variance in the

network model). Moreover, poor OLS performance can be obtained when the problem

output has a relatively large mean value, because the error reduction ratio, Equation 3.14,

directly depends on the output values. Thus, the method may terminate based on the error

78

reduction ratio condition, but still has large actual training error. In that case, the network

ends up with fewer neurons than needed. Furthermore, if the tolerance 𝜀 is set to be too

small, it leads to a network with an excessive number of basis functions.

This work proposes new termination criteria in order to improve the OLS method

performance, as well as to prevent unstable performance at different types of outputs. The

proposed criteria terminate the algorithm based on the calculation of the mean square

errors (MSEs) and the sum of error reduction ratios (∑ [𝑒𝑟𝑟]𝑗
𝑘
𝑗=1), as shown in Equation

3.15.

 { [1 − ∑ [𝑒𝑟𝑟]𝑗
𝑘
𝑗=1 ≤ 𝜀1] & [𝑀𝑆𝐸𝑘 ≥ 𝑀𝑆𝐸𝑘−1]

or 𝑀𝑆𝐸𝑘 ≤ 𝜀2 }

(3.15)

MSE =
1

𝑀𝑁
∑ ∑(𝑡𝑛𝑚 − 𝑦𝑛𝑚)2

𝑀

m=1

𝑁

𝑛=1

 (3.16)

In Equation 3.15, and assuming the kth iteration is the current iteration, 𝑀𝑆𝐸𝑘 and

𝑀𝑆𝐸𝑘−1 are the calculated MSEs for the current and previous iterations, respectively. 𝜀1

is the tolerance for error reduction ratio (set heuristically to small value, e.g., 0.0001). 𝜀2

is the tolerance for the 𝑀𝑆𝐸𝑘 in the current iteration (set heuristically to small value, e.g.,

0.1). In Equation 3.16, 𝑦𝑛𝑚 is the n network-predicted output for the mth training case,

and 𝑡𝑛𝑚is the nth exact output in the mth training case.

The new criteria guarantee the termination of the OLS method only after it selects

the proper number of neurons for the final network design, and for any type of problem.

Along with the calculated ∑ [𝑒𝑟𝑟]𝑗
𝑘
𝑗=1 , the criteria account for the training error by

calculating the MSE at each iteration. Thus, the first condition is not satisfied unless

𝑀𝑆𝐸𝑘 stops decreasing or starts increasing. Requiring that 𝑀𝑆𝐸𝑘 ≥ 𝑀𝑆𝐸𝑘−1 ensures that

79

the OLS method reaches its optimum design at the kth iteration (i.e., the network’s best

possible results are reached at the kth iteration and start to move beyond the optimal

model if more basis functions are added). The second termination criterion is introduced

to address applications with relatively small mean outputs and outputs with small

variance. It depends on the 𝑀𝑆𝐸𝑘, but considers the first condition implicitly, where

 𝑀𝑆𝐸𝑘 cannot be small unless ∑ [𝑒𝑟𝑟]𝑗
𝑘
𝑗=1 is almost 1. When the 𝑀𝑆𝐸𝑘 is small, but not

zero, the issue of over-fitting is avoided, because its existence is directly indicated by

obtaining a too-small training error value. Thus, that condition avoids the possibility of

designing a more complex network than needed.

After the OLS is completed, the normalized inputs of the training cases that are

selected as the most significant cases are used as the final centers of the network basis

functions, where 𝒖𝑖 = 𝒙̅𝑖. Consequently, the basis function centers 𝑼 = [𝒖1, 𝒖𝟐, … , 𝒖 𝑀𝑠
]

with the total number of basis functions equal to 𝑀𝑠. The network’s preliminary output

weight vector 𝒘𝑜 is calculated directly by back-substitution (Equation 3.17). If the

network has multi-outputs, the network output weight becomes matrix 𝑾𝑜, in which each

row corresponds to one output.

[𝒈 = 𝑨𝒘𝑜] ≡

[

𝑔1

𝑔2

:
:

𝑔𝑀𝑠]

= [

1 𝛼12 ⋯ 𝛼1 𝑀𝑠

0 1 ⋱ ⋮
⋮
0

⋯
⋱
0

𝛼 𝑀𝑠−1 𝑀𝑠

1

]

[

𝑤1

𝑤2

:
:

𝑤𝑀𝑠]

(3.17)

As stated, the OLS procedures work iteratively to calculate 𝒛𝑖, 𝑔𝑖, and [𝑒𝑟𝑟]𝑖 to

assign and add the new center after each iteration until the termination criteria are

satisfied.

80

The full procedures for the OLS algorithms are summarized in the following

steps:

Step I: Start the counter for the number of selected basis function centers k=1.

Using all M training cases, calculate 𝒛𝑖, 𝑔𝑖, and [𝑒𝑟𝑟]𝑖 for 1 ≤ 𝑖 ≤ 𝑀, which are shown in

Equations 3.18 , 3.11, and 3.13, respectively. Note that 𝒛𝑖 in the first step is set to 𝒉𝑖

(Equation 3.1) since there are no previously chosen basis function centers.

 𝒛𝑖 = 𝒉𝑖 (3.18)

If the problem has multiple outputs (assume N number of outputs), then 𝑔𝑖𝑗 is the

ith solution calculated for predicting the jth output (𝒕𝑗) (Equation 3.19). [𝑒𝑟𝑟]𝑖 is

calculated as the average of 𝑔𝑖𝑗 calculated from N outputs (Equation 3.20).

 𝑔𝑖𝑗 = (𝒛𝑖
𝑇𝒕𝑗)/(𝒛𝑖

𝑇𝒛𝑖) (3.19)

[𝑒𝑟𝑟]𝑖 = ∑(
𝑔𝑖𝑗

2 𝒛𝑖
𝑇𝒛𝑖

𝒕𝑗
𝑇𝒕𝑗

) 𝑁⁄

𝐿

𝑗=1

 (3.20)

Step II: Find the training case with the maximum error reduction rate among the

calculated errors ([𝑒𝑟𝑟]𝑖) in Step I (Equation 3.21). Then, set the first orthogonal column

𝒛1 to be the basis function output 𝒉1
𝑖1 that corresponds to that training case (Equation

3.22).

 [𝑒𝑟𝑟]1
𝑖1 = max{[𝑒𝑟𝑟]𝑖 , 1 ≤ 𝑖 ≤ 𝑀} (3.21)

 𝒛1 = 𝒛1
𝑖1 = 𝒉1

𝑖1 (3.22)

Step III: Set the counter to k=k+1. For the training cases (1 ≤ 𝑖 ≤ 𝑀, and 𝑖 ≠

𝑖1, …… . , 𝑖 ≠ 𝑖𝑘−1), calculate the following:

𝛼𝑗𝑘

𝑖 =
𝒛𝑗
𝑇𝒉𝑖

𝒛𝑗
𝑇𝒛𝑗

 , (1 ≤ 𝑗 < 𝑘)
(3.23)

81

𝒛𝑘
𝑖 = 𝒉𝑖 − ∑ 𝛼𝑗𝑘

𝑖

𝑘−1

𝑗=1

𝒛𝑗 (3.24)

 𝑔𝑘
𝑖 = (𝒛𝑘

𝑖)𝑇𝒕/((𝒛𝑘
𝑖)𝑇𝒛𝑘

𝑖) (3.25)

[𝑒𝑟𝑟]𝑘

𝑖 =
(𝑔𝑘

𝑖)2(𝒛𝑘
𝑖)𝑇𝒛𝑘

𝑖

𝒕𝑇𝒕

(3.26)

In Equation 3.23, 𝛼𝑗𝑘
𝑖 is the kth element in the jth row in the matrix𝑨 . In Equation

3.24, 𝒛𝑘
𝑖 is the produced kth orthogonal vector in the matrix 𝒁 using the ith training case. In

Equation 3.25, 𝑔𝑘
𝑖 is the kth OLS solution produced from the ith training case. In Equation

3.26, [𝑒𝑟𝑟]𝑘
𝑖 is the kth error reduction ratio due to the selection of the ith training case. As

in Step I, this step can simply include multiple outputs, where the values in Equations

3.25 and 3.26 are changed to be averaged like those in Equations 3.19 and 3.20.

Step IV: Find the case with maximum error among the calculated errors ([𝑒𝑟𝑟]𝑘
𝑖)

in Step III (Equation 3.27). Then, set up the new current 𝐳𝑘 to correspond to the case with

maximum error ([𝑒𝑟𝑟]𝑘
𝑖𝑘) (Equation 3.28).

 [𝑒𝑟𝑟]𝑘
𝑖𝑘 = max ([𝑒𝑟𝑟]𝑘

𝑖 , 1 ≤ 𝑖 ≤ 𝑀, 𝑖 ≠ 𝑖1, . . , 𝑖 ≠ 𝑖𝑘−1) (3.27)

𝐳𝑘 = 𝒛𝑘
𝑖𝑘 = 𝒉𝑖𝑘 − ∑ 𝛼𝑗𝑘

𝑖𝑘

𝑘−1

𝑗=1

𝒛𝑗 (3.28)

Step V: Check the termination criteria (Equation 3.15). If the condition satisfies,

exit the algorithm. Otherwise, return to Step III.

3.2.4. Optimizing network parameters

This section illustrates the optimization procedure, which is the last component of

the new training process. The optimization procedure minimizes the training error in

82

order to decrease the network bias produced by the OLS method. Bias is defined as the

difference between an estimator’s expectations (i.e., the network’s predicted outputs) and

the true (actual) values of the outputs being estimated. The OLS method decreases model

variance, which refers to the error produced when predicting the same output (i.e., the

sensitivity of the model for the changes in the training set), but increases its bias. Figure

3.3 clearly shows the inverse relationship between the bias and variance, where the bias

increases when variance decreases and vice versa. The optimal network design should

minimize both variance and bias. As in the figure, the actual (true) error, “Test Error,” is

optimum (minimum) when both values are minimized. Consequently, this step decreases

the bias and provides the optimal network design. More information about model

complexity and bias-variance trade-off topics can be found in the literature (Friedman,

1997; Geman, Bienenstock, & Doursat, 1992; Kohavi & Wolpert, 1996).

Figure 3.3: Model complexity vs. error in terms of its variance and bias.

83

 As shown in Figure 3.3, the bias is reduced by minimizing the training error. The

error can be represented by the sum-squared error (SSE) and minimized in Equation 3.29.

The SSE is the difference between the predicted network output 𝑦𝑚 and the actual output

𝑡𝑚 for all training cases. The optimization has the basis function spreads 𝝈 and output

weights 𝒘 as its design variables. It also uses the values 𝝈𝑜, 𝒘𝑜 found in the previous

steps as initial guesses to help increase computational speed. The optimization is solved

using the sequential quadratic programming method that is implemented with the

MATLAB® environment (Fletcher, 2013; Hock & Schittkowski, 1983; Powell, 1983).

 Given: 𝝈𝑜, 𝒘𝑜

Minimize: 𝑓(𝝈, 𝒘) = ∑ (𝑡𝑚 − 𝑦𝑚)2𝑀
𝑚=1

 = ∑ (𝑡𝑚 − (∑ ℎ𝑚𝑞 ∗ 𝑤𝑞
𝑀𝑠
𝑞=1))2𝑀

𝑚=1

Subject to: 0 < 𝜎𝑞 ; 𝑞 ∈ 𝑅𝑀𝑠

(3.29)

 Using both 𝝈 and 𝒘 as design variables provides additional degrees of freedom

when creating the final optimal designs. Thus, the final optimal regression surface can be

detailed enough to represent the complexity of the predicted problem sufficiently. Along

with the number of basis functions, which is set in the OLS step, both 𝝈 and 𝒘, which are

optimized in this step, determine the regression surface complexity. The actual

importance of 𝝈 is to change the degree of overlapping between various basis functions

(see Equation 2.1 and Figure 2.3), while 𝒘 is to scale the basis function outputs (i.e.,

provide the weighted importance for the basis function outputs) (see Equation 2.1 and

Figure 2.5). Eventually, 𝒘 also contributes in determining the final models’ complexity

order. The values of 𝝈 are constrained in order to keep positive values.

84

The optimization to involve multiple outputs (assume N number of outputs) is

formulated as follows:

 Given: 𝝈𝑜, 𝑾𝑜

Minimize: 𝑓(𝝈, 𝑾) =
1

𝑁
∑ ∑ (𝑡𝑛𝑚 − 𝑦𝑛𝑚)2𝑀

𝑚=1
𝑁
𝑛=1

 =
1

𝑁
∑ ∑ (𝑡𝑛𝑚 − (∑ ℎ𝑚𝑞 ∗ 𝑤𝑛𝑞

𝑀𝑠
𝑞=1))2𝑀

𝑚=1
𝑁
𝑛=1

Subject to: 0 < 𝜎𝑞 ; 𝑞 ∈ 𝑅𝑀𝑠

(3.30)

In Equation 3.30, 𝑾𝑜 = [𝒘1 𝒘2 … 𝒘𝑁] is a matrix of preliminary output weight

vectors for all N outputs, 𝑡𝑛𝑚 is the true mth training value of the nth network output, 𝑦𝑛𝑚

is the predicted mth training value of the nth network output, ℎ𝑚𝑞 is the qth basis function

output for the mth training case, and 𝑤𝑛𝑞 is the output connection weight between the qth

basis function and nth output.

Unlike optimization in a traditional RBN, which finds 𝑼, 𝝈, and 𝒘 as design

variables, this work does not optimize 𝑼 with 𝝈 and 𝒘, for the following reasons:

1. Optimizing 𝑼 does not generally provide an acceptable generalization for the

predicted problem, because the resulting locations of the centers might change

completely from that in the training space (see Sections 2.2.3 and 2.2.4.1). It is more

stable for the network to use the original training cases as their basis function centers,

because their locations represent real values within the training grid. Optimizing 𝑼

values could also change the training space by finding new locations outside the

training space, which makes the network performance unstable. On the other

hand, 𝝈 and 𝒘 values are expected to change slightly from those found in the previous

steps, to reduce the training error without changing the original training space.

85

2. Selecting 𝑼 from the original training cases (the OLS method sets 𝒖𝑖 = 𝒙̅𝑖) helps

post-analysis for the studied problem. These analyses are concerned with studying the

most significant basis functions, training cases, and input parameters by connecting

the network parameters to the task parameters. If 𝑼 values are optimized to values

different from the exact inputs of the training cases, it will be difficult to extract

useful information about the original training cases and their input values.

After the optimization step, which sets the 𝝈 and 𝒘 values, the network training

process is completed. When the network is provided with new input (i.e., test case), the

network provides instant prediction for the output. Using the parameters 𝒖𝑞 and 𝜎𝑞 found

in the steps of the training process, the basis function outputs (ℎ𝑞) are calculated

(Equation 3.31). Then, the network output (𝑦), Equation 3.32, is calculated using 𝒉 and

𝐰.

 ℎ𝑞 = exp[−‖𝒙 − 𝒖𝑞‖ 2𝜎𝑞
2⁄] (3.31)

 𝑦 = 𝒉 ∙ 𝒘 (3.32)

In Equation 3.31, 𝒙 = [𝑥1 ……𝑥𝐼]
𝑇 is the network input, 𝒖𝑞 = [𝑢1 ……𝑢𝐼]

𝑇 ,

which is the qth row in U, is the qth basis function center found in the OLS method, and

𝜎𝑞 is the spread of the qth basis function. In Equation 3.32, 𝒉 = [ℎ1 ……ℎ𝑀𝑠
] is a vector

output from the 𝑀𝑠 significant basis functions and 𝒘 = [𝑤1 ……𝑤𝑀𝑠
]𝑇is the output

weight vector found by the optimization.

86

3.3. Results

 The new network, henceforth referred to as Opt_RBN, is evaluated in terms of its

testing error (accuracy). Testing error is the error produced from the model when

predicting output that corresponds to new inputs that have never been used as training

cases. The Opt_RBN performance is first tested on three experimental regression

problems and compared with other common networks. Then, its performance is evaluated

and compared on practical regression problems.

3.3.1. Experimental regression problems

In the four experimental problems, Opt_RBN is compared with the following

models: 1) linear regression, 2) feed-forward back-propagation network (FFN), and 3) the

OLS-based RBN. The linear model is included as a well-accepted baseline. The FFN is

included because it is the most commonly used ANN. The OLS-based RBN is included

because it represents the closest ANN to the proposed Opt_RBN.

Regarding the used ANN models, the FFN model is proposed in the literature

(Hagan, Demuth, & Beale, 1996), where the user heuristically sets the number of basis

functions in the hidden layer before the network connection weights (𝒘) are optimized

based on the back-propagation approach and using early stopping criterion. With respect

to the OLS-based RBN, the design in MATLAB® (Beale, Hagan, & Demuth, 2001; Chen

et al., 1991) is used, where the user sets the desired training error and Gaussian spread

value, and the network then creates the proper number of basis functions to reach the

training error.

87

Testing error is calculated based on two common methods: 1) root mean square

error (RMSE) and 2) mean absolute error (MAE) (Hyndman & Koehler, 2006). The

RMSE measures the average magnitude of the error (Equation 3.33) over the test sample

N. (i.e., the squared averaged difference between the forecast value (predicted value) (𝑦𝑖)

and corresponding observed value (true or exact value) (𝑡𝑖)). Since the errors are squared

before they are averaged, the RMSE gives a relatively high weight to large errors

compared to small ones. This means the RMSE is most useful when large errors are

particularly undesirable, which is the case in this work.

𝑟𝑜𝑜𝑡 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) = √
1

𝑁
∑(𝑡𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 (3.33)

The MAE measures the average magnitude of the errors in a set of forecasts

(predictions), without considering their direction (Equation 3.34). The MAE measures the

average of the absolute values of the differences between forecast value (𝑦𝑖) and the

corresponding observation (𝑡𝑖) over the testing sample N. The MAE is a linear score,

which means that all the individual differences are weighted equally in the average.

𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =
1

𝑁
∑|𝑡𝑖 − 𝑦𝑖|

𝑁

𝑖=1

 (3.34)

3.3.1.1 Example 1

The first simulation example is a mathematical equation with two inputs (𝑥1

and 𝑥2) and a single output 𝑓(𝒙) (Equation 3.35).

 𝑓(𝒙) = √2𝑥1𝑥2 − 𝑥2 + 4 , 𝑥𝑖 ∈ [0,20] (3.35)

88

 Five training cases are created randomly from the equation, with an input range

between 0 and 20 for both variables. Only five training cases are used in this simulation

in order to evaluate the performance of the new network with a reduced number of

training cases. Three testing cases, which differ from those used to train the models, are

used to calculate each model’s errors.

 The training and testing cases are resampled three times, meaning the four models

are built three times using three different sets of training and testing cases. Based on the

rule of thumb, there are three basis functions used in the hidden layer of the FFN, while

the OLS-based RBN is set to have training error equal 0.01 with spread of 0.4. After

trying various values, these settings produce the best possible performance for the used

models. A summary of the testing errors is shown in Table 3.1. The Opt_RBN model

outperforms all models with relatively high accuracy. The second most accurate model is

the RBN. The linear model, as expected, cannot provide accurate results because the

equation being simulated is nonlinear. The result of FFN is also relatively inaccurate.

With respect to computational speed, all models produce testing results in a fraction of a

second.

Table 3.1: Test error produced from the four regression

models, Linear, FFN, RBN, and Opt_RBN, for simulation

example 1.

Model Type RMSE MAE

Linear 42.6 35.3

FFN 34.2 28

RBN 19.6 18

Opt_RBN 12.8 10.9

89

 To ensure that the Opt_RBN always provides improved performance (i.e.,

minimal test error), its performance is evaluated at various numbers of training cases. The

Opt_RBN test error is calculated and compared with the RBN model only, because RBN

is the most accurate comparable model. Both models are built and tested using 3, 5, 11,

and 21 training cases, and the RMSE for the test set is reported in Figure 3.4. These

results are, again, the averages of the errors resulting from using three different training

and testing sample sets. The results show superior performance for Opt_RBN, which is

approximately half the error obtained by the RBN. Even with a larger number of training

cases, the Opt_RBN still outperforms the RBN. Even though an RMSE difference of 5

between the Opt_RBN and RBN seems relatively small in some applications, such a

difference can be considered significantly large in applications like human motion

prediction.

Figure 3.4: Test set RMSE plots for RBN and Opt_RBN at various numbers of training

cases for simulation example 1.

90

The Opt_RBN performance shows faster convergence to its minimum test error

using fewer training cases than those in RBN. Both networks start with slightly better

Opt_RBN test error at three training cases, which is too small a training size. Then, the

Opt_RBN has significantly fewer test errors for the remaining numbers of training cases.

3.3.1.2 Example 2

The second example involves prediction of two mathematical equations, (𝑓1(𝒙)

and 𝑓2(𝒙), both of which have two inputs (𝑥1 and 𝑥2) (Equation 3.36). Twenty training

cases are created randomly from each equation for an input range between 0 and 20 for

both variables. The number of training cases used is expected to be limited for a model to

be trained to predict two outputs.

 𝑓1(𝒙) = √2𝑥1𝑥2 − 𝑥2 + 4 , 𝑥𝑖 ∈ [0,20]

𝑓2(𝒙) = 𝑥2
2 + 3𝑥1 , 𝑥𝑖 ∈ [0,20]

(3.36)

As in Example 1, three test cases are used to evaluate and compare the

performance of the four regression models. Again, using the rule of thumb in setting the

proper number of basis functions, there are five basis functions used in the hidden layer

of the FFN, while the OLS-based RBN is set to have training error equal 0.01 with spread

of 0.3. The resulting RMSE and MAE are shown in Table 3.2, where the errors in the

table represent the average errors for both predicted outputs. The best performance is

achieved by the Opt_RBN for both error measurements (RMSE and MAE).

91

Table 3.2: Test error produced from the four regression models,

Linear, FFN, RBN, and Opt_RBN, for simulation example 2.

Model Type Average RMSE Average MAE

Linear 25.1 23

FFN 18.9 16.4

RBN 16.7 11.6

Opt_RBN 5.3 3.6

Figure 3.5 illustrates plots for the resulting RMSEs produced from the RBN and

Opt_RBN models trained with 5, 10, 20, and 50 training cases. A relatively small RMSE

was obtained in the Opt_RBN with as few as 20 training cases. Figure 3.5 also suggests

better ability for the Opt_RBN for reaching small error with fewer training cases. This in

turn enhances the promising conclusions regarding the improved performance of

Opt_RBN with a reduced number of training cases.

Figure 3.5: Test set RMSE plots for RBN and Opt_RBN at various numbers of training

cases for simulation example 2.

92

On the other hand, the results in Figure 3.5 show that when more training cases

are available, the Opt_RBN outperformance starts to slightly decline, where its error

results become closer to those produced from the RBN. The different performance

between both models decreases with more available training data, because the Opt_RBN

can have over-fitting issue due to the optimization step that reduces the training error in

the training process. With more training data, the Opt_RBN parameters are optimized to

learn the training data more than the proper generalization, which reduces the test error.

3.3.1.3 Example 3

Example 3 is more complex than the first two examples, as it has three

outputs, 𝑓1(𝒙), 𝑓2(𝒙), and 𝑓3(𝒙), representing three mathematical equations, each with

two inputs (𝑥1 and 𝑥2) (Equation 3.37).

 𝑓1(𝒙) = √2𝑥1𝑥2 − 𝑥2 + 4 , 𝑥𝑖 ∈ [0,100]

𝑓2(𝒙) = 𝑥2
2 + 3𝑥1 , 𝑥𝑖 ∈ [0,100]

𝑓2(𝒙) = 𝑥2 + 3𝑥1 − 2 , 𝑥𝑖 ∈ [0,100]

(3.37)

 Fifty training cases are created from each equation with an input range of 0-100

for both variables. Note that the range of inputs is more than that in the first two

examples, in order to produce a more challenging problem. The wider input ranges

increase the problem’s complexity; the model is expected to predict all possible inputs

over that range of inputs.

The four models’ performances are evaluated using five test cases and by

calculating the produced RMSE and MAE, which are averaged over all outputs (Table

3.3). There are five basis functions used in the hidden layer of the FFN, while the OLS-

based RBN is set to have training error equal to 0.01 with spread of 0.3. The Opt_RBN

93

model again demonstrates the best performance. The RBN and FFN experience

difficulties in predicting this example, as evidenced by the large errors shown in Table

3.3. With respect to computational speed, all models produce testing results in a fraction

of a second.

Table 3.3: Test error produced from the four regression models,

Linear, FFN, RBN, and Opt_RBN, for simulation example 3.

Model Type Average RMSE Average MAE

Linear 621.2 530.8

FFN 110.7 94.1

RBN 92.2 58.6

Opt_RBN 15.7 11

It is necessary for the network models in this example to be trained with more

training cases because, given the three outputs (equations) to be predicted using one

network with a wide range of inputs, the problem is more complex than the first two

examples. Thus, the RBN and Opt_RBN are trained with 10, 20, 50, and 100 training

cases. The results show superior performance for the Opt_RBN (see Figure 3.6). When

using 20 training cases, the Opt_RBN produces RMSE around two times better than that

produced from the RBN and FFN when trained with 50 training cases. In Figure 3.6, even

though 10 training cases are not enough in either case, the results show significant

differences in the performance of the two models. Furthermore, the Opt_RBN error with

50 cases is still better than that in RBN with 1000 cases. Considering the complexity of

Example 3, the use of 100 training cases could be sufficient for the Opt_RBN, since the

error is approximately 4.8. On the other hand, given the test error reached by the

94

Opt_RBN, the RBN results indicate its need for more training cases to approach results

comparable to those obtained by Opt_RBN.

Figure 3.6: Test set RMSE plots for RBN and Opt_RBN at various numbers of training

cases for simulation example 3.

3.3.1.4 Example 4

The fourth simulation example is the most challenging one with two equations

and five inputs (𝑥 ∈ ℝ5) (Equation 3.38).

𝑓1(𝒙) = ∑𝑥𝑖
2

5

𝑖=1

 , 𝑥𝑖 ∈ [−10,10]

𝑓2(𝒙) = ∑[(𝑥𝑖
2 − 𝑥𝑖)

3 − (2 + 𝑥𝑖)
2]

5

𝑖=1

 , 𝑥𝑖 ∈ [−2,2]

(3.38)

95

 Seventy training cases are created for each equation, as well as 10 test cases to

evaluate the network models’ performances. Again, the training and testing cases are

resampled three times. There are 15 basis functions used in the hidden layer of the FFN,

while the OLS-based RBN is set to have training error equal to 0.01 with spread of 0.3.

The produced averaged RMSE and MAE for the test cases are shown in Table 3.4, which

shows that the Opt_RBN outperforms the other models. The Opt_RBN shows around

20% better performance than the FFN and RBN.

Table 3.4: Test error produced from the four regression models,

Linear, FFN, RBN, and Opt_RBN, for simulation example 4.

Model Type Average RMSE Average MAE

Linear 313.7 158.3

FFN 182.4 12

RBN 192.3 12

Opt_RBN 151.8 10.4

 The RBN and Opt_RBN are trained with 10, 30, 50, 70, and 100 training cases,

and the error results are shown in Figure 3.7. Opt_RBN produces smaller errors at all

presented training cases, and its errors decline faster than the RBN. In Figure 3.7,

Opt_RBN, when trained with only 30 cases, provides error less than the RBN when

trained with 100 cases.

96

Figure 3.7: Test set RMSE plots for RBN and Opt_RBN at various numbers of training

cases for simulation example 4.

It is typical for the ANN in some cases to provide results with no improvement, or

sometimes worse results, when trained with more training cases. Such a case occurs for

the Opt-RBN, as shown in Figure 3.7, when trained with 50 and 70 cases, respectively.

The main reason for that to occur is that sometimes the locations of the additional

training cases within the training space are very close to other previously existing cases.

Thus, the additional training cases do not provide the network with new information

regarding the training space in order to improve the hyper-surface that is produced when

the network is being trained. Furthermore, sometimes some of the additional training

cases might improve the accuracy in the resulting regression hyper-surface at some

portions (less test errors for some test cases), but other training cases cause issues like

over-fitting (see Chapter 2) that lead to poor performance in other surface portions (more

test errors for some other test cases).

97

In general, the results of the four presented examples indicate that RBN and FFN

models need more training cases in order to provide accuracy comparable to that

provided by Opt_RBN. In other words, Opt_RBN is capable of improving the prediction

results for a problem for the available given training cases. For example, if example 4 has

100 cases available for training, Opt_RBN can produce results that are around 30% better

than those from RBN.

3.3.2. Practical (real-world) regression problems

 For real-world regression problems, the Opt_RBN performance is evaluated and

compared with the OLS-based RBN on two problems that are related to prediction of

forces on the knees for injury prevention application using multi-scale human modeling

software. The network comparison is also performed at different numbers of training

cases, but only one set of training and test cases are used (no resampling or training with

multiple sets of data) when evaluating the network performance. There is only one set of

training cases available in these problems, because collecting new cases for resampling in

the problems is too costly. Beside the practical implication of evaluating the successful

prediction capability for the new RBN design, the new network provides a new, faster

tool for injury prevention. In addition, the network facilitates the integration of multiple

software within the same environment without running them separately. Furthermore,

predicting the knee forces problem illustrates an initial investigation for the network

performance when is being applied on digital human modeling problems.

Overview: Multi-scale predictive human model for injury prevention

98

To improve human performance and help prevent orthopedic joint injuries, which

account for more lost days for military personnel than any other medical issue, a tool for

coupling dynamic motion prediction, muscle activation, and high-fidelity finite-element

models (FEAs) of various joints within a multi-scale human model is being developed.

Although multi-scale modeling is an active area of research, there have been few efforts

to seamlessly link high-fidelity biomechanical models with a complete system-level

digital human model (DHM) for injury prevention (Sultan & Marler, 2012). Thus, the

developed system (Figure 3.8) links the following: 1) Santos dynamic motion prediction

“Santos® Human,” 2) OpenSim model to calculate muscle activation force, 3) FEA model

(ABAQUS®) to calculate the maximum stress, strain, and contact pressure in the joint

components, and 4) a system for predicting the propensity for injury based on potential

mechanical failure in soft tissue.

Figure 3.8: Illustrative diagram for the linked software and models that form the multi-

scale predictive human modeling for injury prevention.

In order to evaluate FEA results in real time, ANN is used in this work to

approximate the high-fidelity models. This integrated multi-scale DHM is a promising

system and allows one to track joint angles and torques, muscle activation, and joint

99

stress during a simulated task. The presented problem is to calculate the maximum forces

and stresses on the knee joint while simulating two motion tasks: walking and stairs

ascent. Extracting these values for the knee joint over various segments of the motion

profile is a time-consuming process, because multiple software programs for human

modeling and FEA (as seen in Figure 3.8) need to be run successively. We present this

problem as an example of a problem with limited available training cases to evaluate the

Opt_RBN design0F1. For this problem, there are four inputs: knee joint angle (degrees),

compression force on the knee (N), shear force on the knee (N), and ground reaction

force (N). The problem has three outputs: maximum stress on the knee (MPa), maximum

percent of strain on the knee (%), and maximum contact pressure on the knee (MPa). The

network-predicted results are evaluated separately for the walking and stairs-ascent tasks.

The same numbers of inputs and outputs and training cases exist for both tasks.

Walking task

For the walking task, there are 25 training cases and three test cases (Table A.1 in

Appendix A). The Opt_RBN and RBN networks are trained with 6, 12, 17, and 25 cases,

and the error results of predicting the test cases are shown in Figure 3.9. Opt_RBN

outperforms RBN at all used training cases. The exceptional performance of the

Opt_RBN is especially clear in the results of training with fewer cases. Even with the full

25 training cases, RBN produces error more than that produced by Opt_RBN. Except

when RBN is trained with 25 cases, the Opt_RBN resulting error with six training cases

is better than any of those resulting from the RBN.

1The work of collecting and preparing the training cases for the knee force problems was

performed with valuable input and direct contribution from Dr. Sultan Sultan.

100

Figure 3.9: Test set RMSE and MAE for RBN and Opt_RBN at various numbers of

training cases for predicting the knee stresses and forces for the walking task.

The same results trend is shown for both RMSE and MAE plots in Figure 3.9.

The results show that the RBN model has larger test error when trained with 17 cases

than when trained with 12 cases. Beside the aforementioned reasons in Example 4

(Section 3.3.1.4), such a case occurs because the models in this problem are trained with

one set of training cases. Actually, having one set of training cases increases the

frequency of such cases occurring in the practical problems, especially those with limited

numbers of training cases or those that are costly to create.

Stairs-ascent task

101

The second task is stairs ascent; its training and test cases are shown in Table A.2

(Appendix A). Again, the Opt_RBN and RBN networks are trained with 6, 12, 17, and 25

cases, and the test results are shown in Figure 3.10. As in the walking task, the Opt_RBN

shows better performance in the stairs-ascent task when trained with fewer training cases.

However, RBN in this task relatively outperforms the Opt_RBN when trained with the 17

and full 25 training cases. Although the Opt_RBN result becomes worse when trained

with 17 and 25 cases for the reasons mentioned earlier, its error in both cases is not far

from that produced by the RBN. On the other hand, the Opt_RBN results with six

training cases are more than twice as good as those of the RBN.

Figure 3.10: Test set RMSE and MAE for RBN and Opt_RBN at various numbers of

training cases for predicting the knee stresses and forces in the stairs-ascent task.

102

The results of the presented examples prove the improved performance introduced

by the new RBN design (Opt_RBN). The general practical implication shows that

Opt_RBN can be trained with fewer training cases, compared to other ANN and

regression models, to achieve a proper accuracy level. When only a limited number of

training cases exists, the network can also provide better results over competing ANNs.

3.4. Discussion

This work proposes a new RBN design to overcome the poor performance of

ANNs when used in applications that have limited numbers of training cases available.

The new RBN design consists of multi-stage training techniques to set up necessary

network parameters in a rigorous and integrated process. In addition, the algorithms are

modified, so the training process can be performed with minimal heuristics. This

integration of OLS and RMSD, with an optimization-based approach, is the primary

novelty of the proposed approach and proves to be effective.

The new design “Opt_RBN” is tested on four experimental problems, and the

results are compared with those from three models: linear regression, FFN and RBN. The

results show that Opt_RBN outperforms the other models in all examples. In addition, for

any given number of training cases, the results prove the better response for the

Opt_RBN to produce smaller error compared with the competing ANNs. Then, Opt-RBN

is evaluated and compared with RBN on two practical regression problems. In general,

Opt_RBN evaluation shows substantial outperformance when trained with fewer training

cases. The Opt_RBN shows stable performance, especially when trained with fewer

training cases for all presented experimental and real-world problems.

103

The new double termination criteria in the OLS method and the quadratic cost

function used in the optimization step guarantee that the Opt_RBN design demonstrates

high robustness and stability to provide improved performance. The robust and stable

behaviors of the new design are illustrated by its results in all presented examples, as well

as when the design is evaluated with multiple training and test samples in the

experimental problems.

The new design proposes a smarter ANN that is capable of improved learning

rather than needing more training data. The new design opens new fields for the use of

ANNs in applications with limited numbers of training data, such as digital human

modeling. The design is introduced with a focus on improving the prediction ability for a

unique problem, which is the regression problem with reduced available training sets.

The use of training algorithms with minimal heuristics allows the new RBN design to

produce results with quality that none of the competing methods have achieved. That

prediction quality is facilitated by the use of OLS to set the inputs of the significant

training case, which are selected from all available training data, as 𝑼, and the

optimization to find the optimal 𝝈 and 𝒘 values.

The improved performance of the new design is achieved at the expense of

training time, because the network includes a multi-stage training process. Although the

new network runs in a fraction of a second for the test cases like the other networks, it

requires more time to be trained. However, its training time is still less than one minute in

all presented examples, and training time is not as important as the run time for test cases

for most practical applications. The training time for the Opt_RBN design might be an

issue for future work when the network is used to predict large-scale problems, in terms

104

of outputs. That is because the optimization needs to find a large number of variables,

possibly in the thousands. In the next chapter, the model performance will be evaluated

when predicting large-scale practical problems that have limited numbers of training

cases, such as motion prediction of a digital human model with full degrees of freedom.

Moreover, incorporation of constraints for such applications within the network design

will be investigated in Chapter 5.

105

CHAPTER IV

NEW DESIGN FOR PREDICTION OF LARGE-SCALE HUMAN DYNAMIC

MOTION APPLICATIONS

4.1. Introduction

There are many algorithms designed to simulate various digital human model (DHM)

tasks and scenarios. As a unique DHM algorithm in terms of its predictive capabilities

and accuracy, predictive dynamic (PD) is used for simulation of various DHM motions

and scenarios. Predictive dynamics is a physics-based algorithm that consists of an

optimization problem with hundreds of design variables and thousands of constraints

(Xiang, Chung, et al., 2010). Although PD simulations are crucial and useful, they are

computationally expensive. For even small changes to the task conditions, the simulation

needs to run for a relatively long time (minutes to tens of minutes). Thus, there can be a

limited number of training cases due to the computational time and cost associated with

collecting training data. In addition, the PD problem is relatively large with respect to the

number of outputs, where there are hundreds of outputs (between 500-700 outputs) to

predict for a single problem. Therefore, there is a critical need for a powerful

computational model to provide real-time simulations for PD problems, and this necessity

leads to the use of tools like the artificial neural network (ANN) in this work.

In response to the special needs of the large-scale DHM problems like PD with

limited training data available, this chapter proposes the use of a newly developed radial-

basis network (RBN) proposed earlier in Chapter 3 (Opt_RBN) (Bataineh & Marler,

2015). Although the Opt_RBN design is proven to improve the prediction results for

106

application with a reduced number of training cases, applying the new design on the

large-scale PD application is somewhat difficult. The Opt_RBN experiences a memory

issue when running the optimization step in its training process (Section 3.2.4) to predict

all PD outputs from a single network model. Therefore, this chapter introduces new

algorithms to modify some steps of the new Opt_RBN training process to address the

memory issue. Eventually, with the new modifications, the Opt_RBN can provide real-

time prediction of a complete PD problem. Nonetheless, the new RBN design and its

training process proposed in Chapter 3 should still be the typical choice when predicting

any regression application with reduced training sets. The modified steps should only be

used for large-scale applications similar to the PD.

This work’s contributions include: 1) a modified Opt_RBN training process for

improved performance in large-scale problems with minimal training data, 2) application

of the new modified Opt_RBN design for real-time prediction of PD tasks for full DHM,

and 3) construction of an RBN design that can be populated for any general large-scale

problem in various applications.

With the successful implementation of the modified algorithms within the new

RBN design in this chapter, the network performance for any potential over-fitting issue

(see Chapter 2 for details) is investigated on experimental simulations. Then, its

capability to provide real-time prediction of two common PD tasks, walking and going

prone, is evaluated. The results are promising, with relatively small errors obtained when

predicting approximately 500-700 outputs from a single network model. Although this

chapter presents modification to the Opt_RBN driven by its potential use with PD, the

consequent ANN design can be used with a broad range of large-scale problems; PD is

107

simply a well-studied example problem for the proposed developments. The new

proposed ANN design can be used for general applications in various large-scale

engineering and industrial fields that experience delay issues when running

computational tools that require a massive number of procedures and a great deal of CPU

memory.

4.2. Background: Predictive dynamic (PD)

Predictive dynamics is a physics-based motion simulation algorithm for DHM

(Xiang, Chung, et al., 2010). The PD method is distinguished from other motion

simulation tools because it produces simulations that reflect the effects of any changes in

the DHM conditions. Since its development, PD has been used to simulate different

motion tasks and scenarios (Kim et al., 2008; Kim, Xiang, Yang, Arora, & Abdel-Malek,

2010; Kwon et al., 2014; Xiang, Arora, & Abdel-Malek, 2010, 2012; Xiang, Arora,

Rahmatalla, et al., 2010). Successful validation of the PD results has been provided using

motion capture systems (Rahmatalla, Xiang, Smith, Meusch, & Bhatt, 2011).

The PD algorithm involves solving a nonlinear optimization problem to find

control points (i.e., motion profiles) for all body degrees of freedom (DOFs), while

adhering to the equation of motion and considering various physical limits and other

motion-related constraints. Equation 4.1 shows a simplified formulation of the PD

optimization problem. The problem is to find the design variables 𝒒, which represent the

control points (i.e., joint angle profiles) of all body DOFs, to minimize a group of human

performance measures, 𝑓(𝒒), subject to the physical equality and inequality constraints.

The constraints include: body contact points, joint ranges of motion (ROMs), torque

108

limits, zero moment point (responsible for balance), equation of motion, ground reaction

forces, etc.

Find: 𝒒 (control points for 55-DOFs)

Minimize: 𝑓(𝒒) = 𝑓(𝒒 − 𝒒𝑀𝑜𝐶𝑎𝑝) + 𝑓(∑ 𝑗𝑜𝑖𝑛𝑡 𝑡𝑜𝑟𝑞𝑢𝑒𝐷𝑂𝐹𝑠
1)

Subject to: ℎ𝑖(𝒒) = 0, 𝑖 = 1, … , 𝑚

𝑔𝑗(𝒒) ≤ 0, 𝑗 = 1, … , 𝑘

(4.1)

In Equation 4.1, 𝒒 is a vector that represents the design variables (control points

for various body DOFs), 𝒒𝑀𝑜𝐶𝑎𝑝 is a vector that represents the reference motion provided

by motion capture (i.e., seed motion), ℎ𝑖(𝒒) is the ith equality constraint (∈ ℝ𝑚), and

𝑔𝑗(𝒒) is the jth inequality constraint (∈ ℝ𝑘).

The control points (𝒒) that are found by optimization in PD eventually form B-

splines for all DOFs that simulate the motion in a DHM model. Each DOF has its B-

spline, Figure 4.1, to be calculated by optimization with satisfied constraints, under the

provided task condition. Having more control points in a B-spline leads to more accurate

motion simulation, but it is computationally more expensive due to the existence of more

design variables. When a PD task is being developed, its conditions eventually become

inputs for the task. Although many inputs are common in all tasks, like loading and

clothing, other inputs are task specific, like step size in the walking task, box height in the

jumping-on-the-box task, etc.

109

Figure 4.1: B-spline for six control points (i.e., joint angle profiles) at six time frames of a

total task time.

The PD algorithm in this work is applied on a DHM called Santos (Abdel-Malek

et al., 2006). Santos is a full-body DHM with a high-fidelity 55 DOFs. Even though there

are many task conditions to be considered in motion simulation, this work uses Santos as

a soldier under the conditions of various loading configurations and some reduced

ROMs.

In PD simulation with Santos, creating a relatively large number of different task

conditions (thousands) is difficult because it is time costly. The running time for each

case, even with minor condition changes, takes minutes to hours to complete and produce

the simulation. This process cannot be automated completely because the simulations

require some post-processing procedures. Hence, the time-cost issue leads to a PD

problem with a limited number of simulations available to be used by pattern recognition

110

tools like ANN to be trained to provide real-time PD simulations. In general, the number

of created cases (conditions) for PD applications is expected to be limited to 10s to 100s.

The large size of the PD problem with respect to the number of outputs is another

challenge for creating a simulation model to provide real-time prediction of the problem.

The number of outputs in a PD task is approximately 500-700 outputs, depending on the

number of control points in each task. These outputs, as mentioned earlier, represent 𝒒 for

all 55 DOFs. Typical optimization tools cannot be used in solving such problems.

Therefore, the PD algorithm uses special optimization software that is designed to solve

large-scale optimization problems like PD motion simulation. The following section

illustrates new methodologies proposed for successful real-time simulation of a large-

scale PD problem, which has a limited number of training cases, using the new RBN

design.

4.3. Method

The fundamental ANN model in this work is the new RBN (Opt_RBN) for

reduced training sets, which is detailed in Chapter 3. That RBN design is chosen because

it outperforms other typical ANN models, especially for applications with a limited

amount of training data. As one of these applications, the PD problem is also considered

large-scale in terms of the number of its outputs (approximately 500-700 outputs). As

stated earlier, the new Opt_RBN design experiences a memory issue when being trained

to predict this relatively large number of outputs. In general, the large-size problem that

causes the memory issue in the new design might be produced when there is a large

111

number of training cases (tens of thousands), inputs (thousands), outputs (hundreds), or a

combination of them.

In the case of the PD problem, the original Opt_RBN design cannot be trained

when the problem has more than 200 outputs. Hence, for successful simulation of the PD

problem, this work illustrates some modifications for the steps of the network training

process that experience the memory issue. The modifications essentially would allow the

training process to be performed by typical algorithms and software, especially for the

optimization step of the process, without the need for a special large-scale optimization

program or a special large storage computer. The new modified Opt_RBN design

performance is also investigated for potential limitations. Eventually, the proposed new

design can be populated for any large-scale application with reduced training sets.

Before presenting the new design methodologies, the network inputs and outputs

need to be defined from the PD problem. The PD background provided earlier

demonstrates the specific PD configurations in this work. The general PD problem has 41

inputs, 16 for the loading configurations (like dress, armor, backpacks, etc.), 24 for joint

range of motion (ROM) (there are 12 DOFs in the different joints in the spine: spine low,

mid-low, mid-high, and high, where each joint includes three DOFs: spine-bending,

spine-flexion, spine-rotation), and 1 that is related to the weapon location between the

hands. The loading inputs represent the mass values for the body links that are affected

by the loadings and the three-dimensional locations of their centers of mass. The ROM

inputs represent the upper and lower limits of the included 12 ROMs. Other task-specific

inputs can be added, like walking speed in the walking task or box height in the jumping-

on-the-box task. The network outputs consist of control points that represent the joint

112

motion profiles, where the number of points is task dependent, for the full 55 DOFs. The

total number is expected to be between 500-700 outputs. Figure 4.2 provides a general

diagram of the ANN model for the PD problem. The ANN model can be populated to

simulate other PD outputs like joint torque for the full 55 DOFs, ground reaction forces

on feet, etc.

Figure 4.2: ANN diagram for general predictive dynamic (PD) applications.

Before it can be used, the ANN needs to be trained on the task being modeled. A

detailed description of the used fundamental RBN design is provided in Chapter 3. In

summary, the training process in that design consists of four main steps. First, inputs of

training cases are all normalized by the standardization method to rescale all inputs to be

within the same scale, between -1 to 1. Next, preliminary values for the network basis

function (i.e., Gaussian) spreads 𝝈𝑜 are set for all potential basis functions using the root

mean square distance (RMSD) by the Euclidean distance-based calculations. Then, the

basis function centers 𝑼 and preliminary values for connection weights 𝑾𝑜 are set using

a new orthogonal least square (OLS) method. Finally, optimal values for 𝑾 and 𝝈 are

calculated by optimization. The steps of setting 𝝈𝑜 and optimization are modified in this

work to overcome the memory issue when applied in PD applications.

113

4.3.1. Training process for large-scale problem with reduced training set

In PD problems, there is a limited number of training cases, as well as a relatively

large number of outputs to be predicted. This work modifies the training process in the

new RBN design (Opt_RBN) for use with maximum accuracy in large-scale PD motion

application without the aforementioned memory issue. Although the modification to the

Opt_RBN is driven by potential use with PD, the consequent ANN design can be used

with a broad range of large-scale problems. However, the training process proposed in

Chapter 3 should still be the typical choice when predicting any regression application

with reduced training sets, and the modified steps should only be applied for large-scale

applications similar to PD.

With respect to the Opt_RBN training process, the optimization step (Equation

3.29), when applied to the PD problem, has tens of thousands of design variables

(approximately 40000). Thus, typical CPU memory and optimization algorithms cannot

solve this large optimization problem. Therefore, the modifications proposed for the new

RBN design specifically tackle the step of setting the preliminary basis function spreads

𝝈𝑜 and the optimization step of setting the basis function spreads and connection

weights 𝑾. These modifications are necessary to allow division of the original

optimization step to perform in multiple runs for groups of outputs. Each optimization

run has a smaller problem size (approximately 300-1000 design variables) than that in the

original optimization problem. With the proposed modifications, the original single

optimization problem reaches the exact final solutions reached by the multiple

optimization runs. The proposed design modifications are illustrated next, and the

114

Opt_RBN design with the new modifications is then evaluated for potential performance

issues.

4.3.1.1 New approach for setting of basis function spreads

In the original proposed design in Section 3.2.4, along with the connection

weights (𝑾 = [𝒘1 𝒘2 … 𝒘𝑁]) corresponding to N outputs, the vector of the basis

function widths, 𝝈, is included as design variables in the optimization step, Equation

3.30. Unlike the connection weights, 𝑾, the widths 𝝈 are coupled and cannot be

separated into different optimization runs. In other words, all 𝝈 elements contribute in

producing all network outputs, while each vector of 𝑾 contributes in producing one of

the network outputs independently from the other vectors (i.e., all 𝑾 elements are

completely independent from each other). That said, in order to be able to divide the

optimization (Equation 3.30) to be solved in multiple smaller optimization problems, the

𝝈 needs to be removed as a design variable from the optimization.

Removing 𝝈 from the optimization necessitates introducing more rigorous

heuristic setting of its preliminary values 𝝈𝑜 because these values will be used as the final

values and will no longer be optimized. The new heuristic setup is especially needed for

an application with either too limited or too many available training cases. As stated, in

the original design, 𝝈𝑜 elements are set to the RMSD (Section 3.2.2). However, the

RMSD value might be almost zero when there is a relatively large number of training

cases, since the distance between the normalized inputs in many training cases is too

small. In a case when few training cases exist, the calculated 𝝈𝑜 based on the RMSD

could be too large to produce a network with accurate predictions. If the widths are

removed from the optimization step, their values need to be found using a more

115

intelligent method in order to use these values in the final network design. Along with

considering the availability of various numbers of training cases, the new method should

also consider performing the training steps with minimal heuristics.

The new modified design of the width 𝝈 calculation is proposed in Equation 4.3.

Setting 𝝈 for large-scale problems like PD mainly depends on the use of the Manhattan

distance (Köthe & Garling, 1969; Schaefer & Wolff, 1999) between the input vectors of

the two adjacent training cases, which is shown in Equation 4.2. The Manhattan distance

is the sum of absolute distances between two points (vectors) in all dimensional space. In

multi-dimensional space, this distance has different representation of the actual distance

between two adjacent points than that provided by the Euclidean distance. Then, the ratio

of the number of training cases to the number of inputs is used together with the

Manhattan distance to set the width 𝜎𝑖 (Equation 4.3). The step of width calculation

assumes all available training cases as potential basis functions; thus, a width value is set

for each available training case. The widths that correspond to the selected training cases

in the OLS step are used in the final network design.

‖𝑢𝑗𝑘‖
1

= ∑|𝑢𝑗𝑖 − 𝑢𝑗,𝑘𝑖|

𝐼

i=1

 (4.2)

𝜎𝑗 = (

𝑀

𝐼
) ‖𝑢𝑗𝑘‖

1
 , 𝑗 ∈ ℝ𝑀 (4.3)

In Equation 4.2, ‖𝑢𝑗𝑘‖
1
 represents the Manhattan distance between the inputs of

the jth training case and its closest kth training cases. 𝑢𝑗𝑖 is the ith input element of the jth

training case, and 𝑢𝑗,𝑘𝑖 is the ith input element of the kth training case that is closest to the

jth training case. In Equation 4.3, 𝜎𝑗 is the spread (Gaussian width) of the jth training case

116

when its input is selected as the basis function. 𝐼 is the size of input vector (i.e., the

number of elements in the input vector). 𝑀 is the number of training cases.

The new formula, Equation 4.3, is formulated so that it counts for the training size

of the application in order to provide appropriate 𝝈 values for any problem. The 𝝈 values

are proportional to the ratio between the size of the training cases and the input

dimension (
𝑀

𝐼
). A preliminary work was performed by investigating multiple approaches

that lead to the ratio
𝑀

𝐼
 as acceptable heuristic setting. In general, if the input size (i.e., the

number of input parameters) 𝐼 increases, more training cases 𝑀 are required to provide

more combinations of these parameters. The increase in 𝐼 is implicitly considered by

increasing 𝑀. Even when 𝐼 increases with fixed 𝑀, the resulting ‖𝑢𝑗𝑘‖
1
 is larger because

typically the training points are further from each other in higher dimensional space. The

larger ‖𝑢𝑗𝑘‖
1
 compensates for the fixed 𝑀, producing larger 𝜎𝑗. Hence, the ratio

𝑀

𝐼

provides an appropriate factor for any problem to produce proper 𝝈 values to handle any

problem’s size with the most generalization. In addition, this ratio reduces the existence

of too-small 𝝈 values.

The heuristic-based 𝝈 values in the new method are used as the final values. Even

when the PD application has a relatively large number of training cases, in the hundreds

or thousands, the 𝝈 values are calculated with a balance between the distance ‖𝑢𝑗𝑘‖
1
 and

the training size. In summary, the new method is appropriate for heuristically setting a

value 𝝈 that depends not just on the ‖𝑢𝑗𝑘‖
1
 value, but is also sensitive to various numbers

of training cases and inputs.

117

4.3.1.2 New grouped optimization of network output weights

The weights 𝑾 = [𝒘1 𝒘2 … 𝒘𝑁] for different outputs can be decoupled, because

each vector of output weights 𝐰𝑛 = [w1, w2, … , w𝑄]
𝑇
 is independent from the others

used to produce the network outputs. Hence, this work proposes a new grouped

optimization step for each group of outputs that are related to each other (Equation 4.4).

Multiple grouped optimization runs are performed, and each includes the weights of

outputs that are related to 1 DOF. There are 55 separate optimization runs corresponding

to the 55 DOFs of the DHM. In contrast to the original optimization problem (Equation

3.30), which involves finding all vectors of 𝑾 in a single run, the new optimization

involves multiple runs, each for a smaller group of vectors 𝑾𝑔.

 For g = 1, 2, …, G: (𝐺 = 55)

Find: 𝑾𝑔 = [𝒘1 𝒘2 … 𝒘𝐷]

Minimize: 𝑓(𝑾𝑔) =
1

𝐷
∑ ∑ (𝑡𝑔,𝑑,𝑚 − 𝑦𝑔,𝑑,𝑚)2𝑀

𝑚=1
𝐷
𝑑=1

 =
1

𝐷
∑ ∑ (𝑡𝑔,𝑑,𝑚 − ∑ [ℎ𝑚,𝑞 ∗ 𝑤𝑔,𝑑,𝑞]𝑄

𝑞=1)
2

𝑀
𝑚=1

𝐷
𝑑=1

(4.4)

In Equation 4.4, G is the number of optimization problems to be solved (55).

𝑾𝑔 = [𝐰𝑔,1, 𝐰𝑔,2, … , 𝐰𝑔,𝐷] is the connection weight matrix that corresponds to the gth

group of outputs (𝑾𝑔 ∈ 𝑅𝐷). 𝒘𝑔,𝑑 = [𝑤𝑔,𝑑,1, 𝑤𝑔,𝑑,2, … , 𝑤𝑔,𝑑,𝑄]
𝑇
 is the output connection

weight vector that corresponds to the dth output in the gth group of optimization. D is the

number of outputs in each gth group. 𝑡𝑔,𝑑,𝑚 is the true value for the dth output of the mth

training case in the gth group. 𝑦𝑔,𝑑,𝑚 is the predicted (network) output for the dth output of

the mth training case in the gth group. ℎ𝑚,𝑞 is the qth basis function output when receiving

118

the input of the mth training case. 𝑤𝑔,𝑑,𝑞 is the connection weight value between the qth

basis function and the dth output in the gth group of optimization.

The memory and running time issues are solved in the new grouped optimization.

It is also found that for practical PD applications the total running time in all grouped

optimizations is less than that for the single optimization run. As an example to

demonstrate that, a comparison of the running time is performed between the single

optimization and the grouped optimization for the PD problem when the network is being

trained with part of the outputs, because the single optimization cannot be performed for

full PD problem. For a PD problem with 200 outputs, which is the maximum number of

outputs the optimization can solve in a single run, the running time in the new grouped

optimization is approximately 20 minutes, while it is approximately 24 minutes for the

single optimization. The solutions from both problems are exactly the same.

4.3.2. Performance analysis for over-fitting issues

The performance of the modified Opt_RBN with the proposed new steps is

evaluated for a potential issue that could limit the network accuracy. Specifically, the

new network performance is evaluated for an over-fitting issue; it is of special concern in

this work, because 𝑾 is the only design variable in the optimization problem. A typical

training algorithm (Equation 2.4 in Section 2.1.1), which involves a similar optimization

problem, generally experiences poor network performance that is mainly due to over-

fitting. Although that training algorithm differs from the new multi-stage training process

in the Opt_RBN, it is worth assuring the resistance of the Opt_RBN design with the new

modified optimization step for over-fitting by evaluating some experimental examples.

119

The examples are employed only to evaluate the network performance for minimal over-

fitting because the new design is already validated on various problems in Chapter 3. The

new Opt_RBN design is then thoroughly evaluated in the next section when applied on

full PD problems.

To check for over-fitting in the new design, its existence is assumed. Then, the

opposite is shown to be true. When an over-fitting problem exists, a simple method called

regularization, or weight-decay, can be used to reduce its effect. The method is performed

by adding a function of the design variables as a second objective function to the original

one (see Section 2.2.3 for more details). Thus, the optimization problem becomes a multi-

objective optimization (MOO), as shown in Equation 4.5. For simplicity, the optimization

in Equation 4.5 assumes all outputs to be calculated in a single problem (G=1). The first

cost function is the network prediction error, and the second one represents the

regularization, which is basically the norm function of the design variables (Bishop &

Nasrabadi, 2006).

 Minimize: 𝑓(𝑾) =
1

𝑁
∑ ∑ (𝑡𝑛𝑚 − ∑ ℎ𝑚𝑞𝑤𝑛𝑞

𝑄
𝑞=1)2𝑀

𝑚=1
𝑁
𝑛=1 + ‖𝑾‖ (4.5)

In Equation 4.5, 𝑡𝑛𝑚 is the true nth output value in the mth training case. ℎ𝑚𝑞 is the

qth basis function output when the mth training case is fed to the network. 𝑤𝑛𝑞 is the

output weight value connecting the qth basis function and the nth output.

For network models with too many basis functions and DOFs, involving only the

error function in the optimization problem might lead to relatively large values for 𝑾 (on

the order of thousands to tens of thousands) as the optimal design values. Such large

values are a sign of a potential over-fitting issue because the produced network regression

surface (i.e., the output (Equation 2.3) becomes too oscillated and unsmooth, see Chapter

120

2 for more details). When the regularization cost function is added to the optimization,

the optimal 𝑾 values are reduced which leads to a smoother resulting regression curve

(Girosi, Jones, & Poggio, 1995).

Even with the regularization part, the over-fitting problem might exist because

more weight might be given to minimize the error function in the MOO (i.e., the error

function might be biased over the regularization function). Therefore, both functions in

the MOO should be normalized to have comparable weights, as shown in Equation 4.6.

The functions 𝑓1
𝑁 and 𝑓2

𝑁 represent the normalized values of the error function and the

regularization function, respectively (Equation 4.7). The weights 𝜆1 and 𝜆2 are used to

provide weighting factors for both functions, respectively. The values 𝜆𝑖 are positive and

have a total of 1 (∑ 𝜆𝑖
𝐶
𝑖=1 = 1 and 𝜆𝑖 ≥ 0). Normalization of the cost functions allows

evaluation of a finite number of combinations for 𝜆𝑖 to analyze the effect of the

regularization function on the optimization. Equation 4.7 shows the simplest and most

common method to produce the normalized function 𝑓𝑖
𝑁(𝒙).

 Minimize: 𝑓(𝒘) = 𝜆1𝑓1
𝑁(𝒘) + 𝜆2𝑓2

𝑁(𝒘) ; ∑ 𝜆𝑖
𝐶
𝑖=1 = 1 (4.6)

𝑓𝑖

𝑁(𝒙) =
𝑓𝑖(𝒙) − 𝑓𝑖

𝑚𝑖𝑛(𝒙)

𝑓𝑖
𝑚𝑎𝑥(𝒙) − 𝑓𝑖

𝑚𝑖𝑛(𝒙)
 , 𝑓𝑖(𝒙) ∈ [0, 1] (4.7)

The maximum value of the ith cost function (𝑓𝑖
𝑚𝑎𝑥(𝒙)) is found when the

optimization is performed without that objective (𝜆𝑖 = 0). The minimum value of the ith

cost function (𝑓𝑖
𝑚𝑖𝑛(𝒙)) is found when the optimization is performed with that cost

function only (𝜆𝑖 = 1). When one function is minimized independently, the other

function value is maximized. Thus, the new value for each function is between 0 and 1.

Since the multi-objective function in Equation 4.6 is discontinuous due to the norm in the

121

second function, a special MATLAB® optimization package, “matlab_CVX,” is used in

this work to solve the optimization with a cost function that includes the norm (Grant,

Boyd, & Ye, 2008).

To investigate over-fitting, the normalized MOO is tested on two of the

experimental examples presented in Section 3.3.1. If any over-fitting exists in the original

optimization (Equation 4.4), the average root-mean square error (RMSE) for the test

cases should be lower when the regularization function is involved in the optimization

(𝜆2 ≠ 0). Otherwise, the RMSE with no regularization (𝜆2 = 0) should be lower than any

other combination of 𝜆𝑖.

Example 1: The first experimental example is shown in Equation 3.35. In this

example, 21 cases are used to train the network using the proposed methods. The

maximum value is 56421.07 (at 𝜆1 = 0) for error function and 194402277.7 (at 𝜆2 = 0)

for regularization function. The minimum value for both functions is zero. The network

optimization step is performed using the MOO and at various 𝜆𝑖 between 0 and 1. The

average test RMSE is found for six test cases at each combination of weights. The RMSE

values are drawn versus the used 𝜆2, as shown in Figure 4.3. In the figure, when 𝜆2 = 1

the error becomes significantly too large compared to that produced using any

other 𝜆2 values. Actually, the MOO (Equation 4.6) always produces significantly large

error when it involves the regularization function only (𝜆2 = 1), because the error

function is completely neglected and the weights are all minimized to zero. In Figure 4.3,

it is obvious that the test error with no regularization (𝜆2 = 0) is lowest. The solution

with the regularization function shows more error that gradually increases when the

contribution of the regularization function increases. Consequently, Example 1 shows

122

that the new modified optimization step still resists the occurrence of over-fitting because

the minimum test error is produced when the regularization function is not included

(𝜆2 = 0) (i.e., when 𝜆2 = 0, the optimization (Equation 4.6) becomes the original

formula (Equation 4.4)).

Figure 4.3: Test RMSE versus the weight value of the regularization function in

simulation Example 1.

Example 2: In Example 2, which is shown in Equation 3.36, 50 cases are used to

train the network. The functions’ maximum values are 89462.99 for the error function

and 49089046.88 for the regularization function. The minimum value for both functions

is zero. As in Example 1, the values of average test RMSE versus 𝜆2 are drawn in Figure

4.4. The average RMSE is calculated for nine test cases in this example. Again, the

results show that the best test error is that obtained with no regularization (when 𝜆2 = 0).

123

Figure 4.4: Test RMSE versus the weight value of the regularization function in

simulation Example 2.

The results obtained in Examples 1 and 2 clearly indicate that, when over-fitting

is assumed in the new design and the regularization function is added to the original cost

function, the added function increases the test RMSEs produced from the network design.

That in turn proves that with the new modification (Equation 4.4) the new Opt_RBN

design has not only no over-fitting issue, but also the most generalized design.

4.4. Results

The new modified Opt_RBN is evaluated on PD applications. The new design not

only enhances the computational speed of motion prediction, but also provides an

insightful test case for the new network. The network is tested on two PD tasks that are

created for the Santos software. The tasks are walking forward and going prone. These

tasks are selected because they differ in terms of complexity and behavior. The modified

124

Opt_RBN performance is evaluated objectively by calculating test error and comparing it

with the results of a typical RBN design (Beale, Hagan, & Demuth, 2001; Chen, Cowan,

& Grant, 1991), which is the same network used to compare results provided in Section

3.3. In addition, subjective evaluation of the visual results is provided.

4.4.1. Walking forward task

The walking task is a common and basic task often discussed in the field of DHM.

In this work, the task includes 42 inputs, which represent the loading conditions, joint

ROMs, weapon point locations on the hands, and walking speed. The loading conditions

(16 inputs) include the total weight of the added equipment on the back and other body

segments and the segment centers of mass in three dimensions. The ROMs (24 inputs)

include normal and reduced ranges of the upper and lower limits of the bending,

extension-flexion, and rotation for four spinal joints (low, mid-low, mid-high, and high).

Although other ROMs can be included as extra inputs in the task, this work includes

these spinal ROMs specifically to evaluate the effect of various loadings, which are

mainly added on the back, on the spinal joints under various ROMs ranges. Note that this

task is performed with weapon in hand, which is also considered in the loading

conditions. The task has 9 control points for each DOF, which means 495 outputs in total,

and 399 training cases are collected representing various combinations of inputs. The

network training time is approximately 41 minutes. The final network includes 74 basis

functions.

To evaluate the network performance, five test cases are used. The test cases are

the cases that have never been used to train the network. With regard to objective

125

evaluation, RMSE for modified Opt_RBN predicted outputs are compared with those

produced from RBN, which takes approximately 3 minutes to be trained for this task. The

average RMSE for the five test cases is 0.031 for the Opt_RBN and 0.04 for the RBN.

Although the results are small for both models, the Opt_RBN has approximately 25%

less error. Since the outputs are calculated in radians, which is the main reason for

obtaining small RMSE in both models, the direct conversion to degrees would produce an

error of approximately 1.78 for the Opt_RBN and 2.3 for the RBN. Reducing the error

when predicting joint angles by 25% on average is an important improvement, because

even errors as small as 2.3 degrees in each joint angle profile might lead to odd visual

motion simulations and violate more constraints when all DOFs are predicted with the

same error level.

Another objective measurement of the results’ accuracy is the number of outputs

each of the network models (Opt_RBN and RBN) can predict with less error than the

other model (i.e., count the number of outputs with smaller RMSE for each network).

Since the PD problem involves hundreds of outputs, it is insightful to measure the

performance of the Opt_RBN design when predicting the problem’s outputs individually.

Such a measurement can be helpful in studying the general trend of the network when

predicting each output. The average number of the more accurately predicted outputs

among the five test cases is calculated. The calculated results show that the Opt_RBN is

more accurate than RBN in this task with an average of 269 outputs compared to 217 for

the RBN. Both networks have the same exact error in 9 outputs. Among the 486

compared outputs, the Opt_RBN provides less error in 52 more outputs than the RBN.

The performed objective evaluations are based on the reported RMSEs for the whole

126

problem, and at the level of each output, a necessary conclusion is drawn regarding the

outperformance shown for the modified Opt_RBN design over the typical RBN.

With respect to the subjective evaluation, the simulation results from the

Opt_RBN design are evaluated visually. The RBN visual results are not included to

compare against the Opt_RBD design, because the visual results from both models do not

show obvious difference over the whole motion. However, the objective evaluations

already provide the necessary insights on the performance of the modified Opt_RBN

design compared to the RBN. Figure 4.5 shows the visual results for the Opt_RBN,

where the motions resulting from the five test cases are simulated for the Santos model.

In the figure, Santos moves from right to left, so the first simulation frame in each case is

on the right side. In Figure 4.5, all simulated motions produced from the Opt_RBN look

acceptable. The network is generally able to predict proper simulations for the

corresponding provided input conditions. Specifically, the effect of heavier loads is

represented in all simulations.

127

Figure 4.5: Selected key frames for walking task simulation results of test cases 1-5 using

the modified Opt_RBN.

In the results of the walking task, the Opt_RBN performance is successful in

providing high-fidelity outputs objectively and subjectively. The small RMSE values for

128

the presented test cases proves the accurate results obtained from the Opt_RBN design.

The visual evaluation also shows acceptable results.

4.4.2. Going-prone task

Going prone is another task that is commonly performed by a warfighter. The task

has 41 inputs, which represent the loading conditions, joint ROMs, and weapon point

locations on the hands. The task has the same inputs used for the walking task, except

with 1 less input (the one that represents walking speed). The going-prone task has 550

outputs, because there are 10 control points for each DOF. The task involves 306 training

cases. The training process takes approximately 18 minutes, and the final network

includes 38 basis functions. This task is also performed with a weapon in hand. Five test

cases, which represent five different loading and ROM conditions, are evaluated for the

task. Furthermore, the same subjective and objective evaluations are performed on the

modified Opt_RBN results.

For the results of predicting the five test cases, the average RMSE for Opt_RBN

predicted outputs is 0.018, while it is 0.026 for RBN, which takes approximately 3

minutes to be trained for this task. Similar to what is performed in the walking task, when

the prediction errors are converted to degrees, the RMSE becomes 1.03 for the Opt_RBN

and 1.5 for RBN. This comparison shows around 30% improvement for the results

produced by Opt_RBN over those from the RBN. As mentioned, the improvement of

seemingly small errors in the PD task is critical, because of the necessity for the highest

possible accuracy in the nature of the simulated PD problems. Reducing the average error

for each DOF from 1.5 to 1 degrees can produce a significant difference when these

129

errors add up for the full 55-DOF DHM in a single simulation. In general, although the

simulated motions in many cases produced from the Opt_RBN and RBN might not be

visually notable or differ significantly, the simulation differences could occur in many

other cases, especially in cases where prediction errors are present in most of the DOFs.

In addition, in complicated problems like the PD tasks, where there are hundreds to

thousands of constraints to be met, any improvements in the simulated motions, even

with seemingly fewer errors, means fewer violated constraints. That is especially true

because none of the constraints are considered yet in the network design when predicting

these simulations.

In terms of model comparison based on the number of outputs with smaller errors,

the Opt_RBN design shows superiority over the RBN with an average count of 181 for

the Opt_RBN versus 172 for the RBN. Even though the numbers are close, this result

provides more proof that the RBN does not outperform Opt_RBN by any means. The

better RMSE value presented for Opt_RBN than for RBN supports that conclusion. The

reported too-close counts together with the different RMSE values indicate that both

models have comparable prediction errors when RBN predicts an output with smaller

errors. On the other hand, the models produce different errors, with less error for the

Opt_RBN and outputs with larger errors for the RBN.

It is important to keep in mind that the new Opt_RBN introduced in this work is a

design that improves the general performance, but that the improvement is significantly

more obvious when fewer training cases are available. That fact is thoroughly evaluated

and validated on various examples in Chapter 3. At any rate, the number of training cases

used to train the networks in the going-prone task (306 cases) is not too limited for a PD

130

task. Other tasks might have as few as 30-40 training cases, and the Opt_RBN should

also show even more significant performance than the RBN design.

Another significant result to be discussed for the network models’ performance on

the going-prone take is the fact that both networks produce the same error values in 197

outputs. This relatively large number of outputs with the same error values demonstrates

that the going-prone task is a too constrained task, and the task shows less effects on the

resulting motion over various changes in loading conditions compared to the walking

task. This in turn means that the task has some joint DOFs, which are represented as a

group of control points, with minor changes at various task conditions. Consequently,

both compared network models are able to predict these outputs with the same accuracy

level.

With respect to the subjective evaluation, the simulation results from the

Opt_RBN design are evaluated visually for the five test cases of the going-prone task.

Figure 4.6 provides visual representation for the simulation results produced from the

Opt_RBN. It is clear that Santos performs the task by moving from the left to the right of

the screen. Thus, the first simulation frame in each case is on the left side. Again, all

simulated motions are acceptable and no odd results are notable. With fewer effects of

various loads on the resulting motion than in the walking task, this task shows a unique

strategy for handling different load configurations in each case. In general, the Opt_RBN

is successful in providing high-fidelity results for the going-prone task, which involves

more outputs to predict and fewer available training cases than the walking task.

131

Figure 4.6: Selected key frames for going-prone task simulation results of test cases 1-5

using the modified Opt_RBN.

With both objective and subjective measurements, the performance of the new

Opt_RBN in predicting the going-prone task is acceptable. The new design outperforms

RBN when both are compared in terms of the RMSE and counting the number of outputs

132

with lower error values. Like the first task, the visual evaluation of the produced motion

(i.e., outputs) from Opt-RBN is acceptable in all cases.

4.4.3. Sensitivity analysis

To check the prediction sensitivity of the modified Opt_RBN at various numbers

of training cases, it is trained and evaluated with various numbers for a walking task, and

its results are compared with those obtained from the RBN. Although it can be done, this

sensitivity analysis does not involve the going-prone task, because currently the task does

not have enough available sets of training cases to perform such an analysis. On the other

hand, a results trend similar to that obtained in the walking task is expected to occur in

the going-prone and other PD tasks since all PD tasks have the same fundamental

problem complexity.

The numbers of training cases used in this study are 44, 132, 198, 399, 918, 1224,

and 1529. The error results of predicting five test cases (the same cases evaluated in the

walking task) for both networks are presented in Figure 4.7. Except for the case with 44

training cases, in which both networks show the same behavior, the modified Opt_RBN

outperforms the RBN in all presented combinations of training cases. For example, when

both networks are trained with 132 cases, the error produced from Opt_RBN is 20% less

than that in RBN and exactly the same produced from RBN when it is trained with 198

cases. Too-close results are produced from both networks when Opt_RBN is trained with

198 cases and RBN is trained with 399 cases. These results show that the Opt_RBN can

use as few as 50% of the training cases required by the RBN to produce the same

prediction errors. Similar results are also produced when Opt_RBN is trained with 399

133

cases compared to RBN trained with 918 cases. These results are necessary indeed when

the networks are trained with fewer training cases, which is the main reason for

introducing the new Opt_RBN design in this work. Consequently, when applied on the

PD problem, as shown for the walking task, the Opt_RBN provides better performance

than the RBN when both are trained with fewer training cases. In any PD task in general,

few training cases (as low as 50-100) might be the only available cases for the network to

be trained to simulate that task. In that case, the use of the Opt_RBN will be most

beneficial.

Figure 4.7: Test set RMSE evaluation for the modified Opt_RBN and a typical RBN

design at various numbers of training cases.

In Figure 4.7, although the minimum RMSE that is reached by RBN and

Opt_RBN when they trained with 1224 cases could be not significantly different (the

RBN error is 0.031 and Opt_RBN is 0.026), the results indicate the superiority of the

134

Opt_RBN over the RBN even when trained with a larger number of training cases. Such

results might be lower or higher for other tasks, but will indeed be significant.

In Figure 4.7, for both network models, some portion of the error curve goes up,

although the network is trained with a larger number of training cases. This case may

occur when the additional training cases cannot help the training process find better

network design. Such a case occurred when the new Opt_RBN design was evaluated on

practical problems in Chapter 3. However, this case can typically be avoided by

performing a resampling on the available data, where the network is retrained multiple

times with different sets of training and test cases. Consequently, smoothly decreasing

test error curves should be achieved for both RBN and Opt_RBN models.

When Opt_RBN is used to predict a PD task, the presented error analysis can

provide an approximation of the number of training cases needed for the network training

process to produce a model with acceptable accuracy. The results in Figure 4.7 show that,

after the Opt_RBN is trained with 399 cases, no significant improvement is obtained. In

addition, given the large number of cases added to train the network, and keeping in mind

the necessity for training with a minimal set of cases, the error reduction from 0.031 to

0.026 is negligible. In general, the performed comparison can be insightful for the PD

application by providing a balance between the desired prediction error and the necessary

number of training cases to be collected. The reduction in the number of training cases in

the PD application is critical for saving effort, since collecting each PD case is

computationally costly. Based on the results shown in Figure 4.7 for the walking task,

training the network with 399 cases instead of 918, where both produce similar prediction

135

errors, could save approximately 55% of the time consumed in collecting the training

cases.

4.5. Discussion

This work leverages the previous work in Chapter 3 to develop a modified

Opt_RBN design to be used in simulating PD tasks. The original design, which is

intended for applications with a reduced number of training cases, is modified to work for

large-scale PD problems in terms of the number of outputs. Although the Opt_RBN

design is proven to improve the prediction results for application with a reduced number

of training cases, applying the Opt_RBN design on the large-scale PD application

experiences some difficulty. Specifically, the Opt_RBN experiences a CPU memory

issue when running the optimization step in the network’s training process (Section 3.2.4)

to predict all PD outputs from a single network model. Thus, the special need for the

computationally expensive PD problem, and other large-scale problems in general, to

produce real-time simulations provides the basic motivation of this work. Eventually,

with the new modifications, the Opt_RBN can successfully predict the PD problem.

Nonetheless, the new RBN design and its training process proposed in Chapter 3 should

still be the typical choice when predicting any regression application with reduced

training sets. The modified steps should only be used for large-scale applications similar

to PD.

This chapter’s contributions include: 1) a modified Opt_RBN training process for

improved performance in large-scale problems with minimal training data, 2) application

of the new modified Opt_RBN design for real-time prediction of PD tasks for full DHM,

136

and 3) construction of an RBN design that can be populated for any general large-scale

problem in various applications. Although this chapter presents a modification to the

Opt_RBN driven by its potential use with PD, the consequent ANN design can be used

with a broad range of large-scale problems; PD is simply a well-studied example problem

for the proposed developments. The new proposed ANN design can be used for general

applications in various large-scale engineering and industrial fields that experience delay

issues when running computational tools that require a massive number of procedures

and a great deal of memory.

The modified algorithms in the Opt_RBN training steps are, first, successfully

implemented. Next, the modified Opt_RBN, due to the performed modifications, is

investigated on two simulation examples for a potential over-fitting issue. Then, the

capability of the modified Opt_RBN is evaluated for providing real-time motion

prediction of two common PD tasks, walking and going prone. In general, the results of

the new network are acceptable objectively and subjectively. The objective comparisons

for the Opt_RBN results with those from the RBN show superior performance by the

Opt_RBN design. The reported RMSEs for both networks indicate more than 25%

improvement of the new network for both presented tasks.

As another objective comparison, the new network's results are compared with

RBN by counting the number of outputs for which each network has more accurate

results. Although the new network outperforms the RBN in both tasks, the calculated

numbers in the going-prone task are close (181 and 172 for Opt_RBN and RBN,

respectively). Such results together with the reported RMSEs for that task lead to the

conclusion that RBN has high errors for only a few outputs relative to the errors produced

137

in all outputs. That is because even though the counts are close for both networks, the

RMSE refers to larger error than the counter does. Assuming the 172 more accurately

predicted outputs by the RBN are comparable to the first 172 more accurately predicted

outputs by Opt_RBN. Thus, the errors produced for these 172 outputs from each network

cancel each other out. Then, the remaining nine more accurately predicted outputs by the

Opt_RBN are responsible for the difference in the average RMSEs between both

networks. Consequently, the new network is able to provide relatively too-small errors

for all outputs compared to the RBN, which clearly provides poor results for some

outputs.

In terms of training times, RBN took approximately 2 to 3 minutes to train for

each task; the new network took approximately 16-40 minutes. Both networks run in a

fraction of a second for the test cases. Given the improvements in the results and the

problem sizes, the training times for the new network are acceptable. Furthermore, the

training time is not as important as the run time for test cases for most practical

applications.

Sensitivity analysis is performed for the modified Opt_RBN and compared with

the RBN to check the performance at various numbers of training cases. Although it can

be done for any PD task, this analysis is performed for the walking task only because

currently it is the only task that has enough available sets of training cases to perform

such analysis. Besides providing additional proof for the superiority of Opt_RBN’s

performance over RBN’s, the analysis introduces a tool that can be used as guidance to

balance collecting the proper number of training cases for the PD tasks with the design of

a network with acceptable results. It will be useful in future work to thoroughly

138

investigate the Opt_RBN prediction capability for other PD tasks over various numbers

of training cases. A selection criterion can, then, be set up for the needed training cases to

be collected for different PD tasks. Moreover, it is beneficial in future work to investigate

finding a proper ratio of outputs to inputs and/or number of training cases for improved

ANN performance in PD applications.

Furthermore, based on the presented results for the evaluated PD tasks, which

show that some task outputs have either too-minor changes or no changes over various

task conditions, the ANN might help in developing new tools in the future to improve the

PD task development process. For example, when a PD task is being developed, the task

could have a reduced number of design variables (i.e., eliminate the unchanged outputs)

or fix the unchanged DOF. That in turn would save development effort and task running

time. The ANN can help in that effort by reducing the number of design variables (i.e.,

control points) for a task after the network prediction capability is evaluated to check for

the control points with minor changes. Future work on the use of the new modified

Opt_RBN design might also involve the prediction of other PD outputs like ground

reaction forces on the feet, joint torque, etc.

In Chapter 5, the use of modified Opt_RBN in this chapter will be expanded to

implement the constraints within the network design. Some of the PD constraints can be

easily violated, even with highly predicted results from ANN because it is a regression

model with approximated results. A task like ladder climbing is highly constrained

because the feet and hands need to stay at specific locations over most parts of the task.

Hence, multiple methods for constraint implementations within the network design will

be presented and evaluated.

139

CHAPTER V

NEW APPROACHES FOR CONSTRAINT IMPLEMENTATION

This chapter investigates methodologies for implementing predictive dynamic (PD)

motion-task contact constraints within the new radial-basis network (RBN) model

presented in Chapters 3 and 4. Implementing the contact constraints is especially

important in PD tasks because these constraints can easily be violated, even with highly

accurate network results. Two main approaches for constraint implementation within the

new RBN design are introduced and evaluated. The approaches are investigated for PD

constraints, but these approaches can be applied for any problem in general. Before the

approaches are illustrated, a brief background on PD constraints is provided.

5.1. Introduction

The PD motion results produced by the new modified RBN, detailed in Chapters

3 and 4, have been tested and validated. However, such motion results can violate some

constraints within the simulated PD task. Therefore, this chapter works toward improving

the performance of the new network design by introducing new approaches to satisfy the

potentially violated constraints. Specifically, since most PD tasks include a relatively

large number of constraints (on the order of hundreds or thousands), the new approaches

focus on implementing the constraints that are difficult to satisfy even with the highly

accurate predictions from artificial neural network (ANN) designs. Even with network-

predicted motion that is very close to the final one, the PD optimization, considering the

140

network predicted motion as initial guess, takes more than 5 minutes, on average, to

satisfy all the constraints.

With PD tasks like walking and going prone (presented in Chapter 4), there are

required constraints, such as those related to the hands’ locations on the carried weapon

and the penetration of the feet through the ground. These constraints are referred to as

contact constraints. Figure 5.1 presents an example of ANN-predicted motion for the task

of jumping on a box with violated contact constraints. This PD task involves a contact

constraint that is specific for its kind, in which the feet location by the end of the task

should be exactly on top of the box. Therefore, constraint satisfaction checks are

necessary when ANN predicts the PD tasks. That in turn allows reaching the level of

using ANN outputs as the real-time, final, and reliable outputs for any predicted task.

Figure 5.1: Example of ANN-predicted motion for the jump-on-box task with violated

contact constraints.

Among the few works that use an ANN for digital human modeling (DHM)

problems, there is one that applies the ANN to posture prediction, but with no precision

for contact constraints (Bataineh, Marler, & Abdel-Malek, 2013). An RBN is used in that

141

work to predict the posture for touching a specific point. Even though the used network is

capable of providing instant posture prediction for a full human model, the network fails

to produce posture with hands exactly on the assigned target point. Consequently, even in

a well-trained ANN, the contact points need to be implemented within the design to

provide more accurate results with satisfied constraints.

Since typical training processes for an ANN involve unconstrained optimization

(Looney, 1997; Wasserman, 1993), constraints are generally incorporated outside the

network design. Scholars have introduced network models with methods for constraint

satisfaction that appear under different names, such as adaptive constrained neural

network, dynamic ANNs, and the hybrid ANN approach. The common limitations in

these constraint implementation models are that they create slower network training and

running designs, worse network performance, or a combination of both. In addition, most

of these models are task-specific (see Chapter 1 for details). Furthermore, some

approaches are proposed for the time-series types of ANNs. Hence, the methods cannot

be directly applied for RBN. Therefore, applying the approaches to the PD problem is not

feasible, because of the large-scale problem size and required highly accurate results that

cannot be sacrificed.

This chapter introduces new approaches for constraint implementation within the

ANN without sacrificing its prediction capability or training speed. In addition, some of

the new approaches are added to the new RBN design and applied on the investigated PD

problems. As an integrated part of the new RBN design (presented in Chapters 3 and 4),

this work investigates two different methods for constraint satisfaction checks on the

network-predicted results. One is performed only once within the network training

142

process, and the other is performed every time in the testing phase after the network

provides its outputs. The primary goal is to modify the network-predicted outputs in order

to satisfy critical constraints in the simulated PD task while considering various

conditions (i.e., various combinations of inputs).

This chapter presents the following specific contributions:

1. Illustrating two new approaches for constraint implementation incorporated within an

RBN. The approaches are applied to satisfy critical constraints in PD problems, but

can also be used for any type of constraints in general.

2. Improving the accuracy of the new RBN-predicted outputs and motion for PD tasks.

In the remaining sections of this chapter, a general background on PD constraints

is provided with an emphasis on illustration of the type of constraints that are

incorporated in the proposed approaches. Next, the methods section illustrates new

approaches to incorporate constraints. Their expected pros and cons are summarized.

Finally, the results of applying each approach are evaluated and compared on different

PD tasks.

5.2. Background: predictive dynamic (PD) constraints

In the formulation of a PD task (presented in Chapter 4), there are different kinds

of constraints that include, but are not limited to, body contact points, hand locations on

the weapon, joint ranges of motion (ROMs), and torque limits. The number of constraints

for each type is fixed, except for the contact constraints. The number of contact

constraints in a task like walking is less than that in ladder climbing, where the hands

need to be on the ladder. Along with the constraints related to hand locations on the

143

weapon, the contact constraints between the body’s hands and feet and other objects and

the ground are the main equality constraints in a PD task (ℎ𝑖(𝒒) (ℝ𝑚) constraints in

Equation 4.1 in Chapter 4). Satisfying the equality constraints is the main reason the

optimization takes a long time to finish. Satisfying these constraints is critical for

accurate and visually accepted motion results. Therefore, the equality constraints, in

particular, need to be implemented within the new RBN design. Although the new

network does not provide a procedure to satisfy the constraints, violating the equality

constraints cannot be tolerated. The inequality constraints are typically satisfied quickly,

and their slight violation is tolerable since it does not generally affect the resulting motion

significantly.

After the inequality constraints are removed from the PD optimization, for a

simple illustration, the optimization problem presented in Chapter 4 is rewritten in

Equation 5.1.

 Find: 𝒒 (control points for 55-DOFs)

Minimize: 𝑓(𝒒) = 𝑓(𝒒 − 𝒒𝑀𝑜𝐶𝑎𝑝) + 𝑓(∑ 𝑗𝑜𝑖𝑛𝑡 𝑡𝑜𝑟𝑞𝑢𝑒𝐷𝑂𝐹𝑠
1)

Subject to: ℎ𝑖(𝒒) = 0, 𝑖 = 1, … , 𝑚

(5.1)

In Equation 5.1, 𝒒 is a vector that represents the design variables (which are the

control points for various body DOFs), 𝒒𝑀𝑜𝐶𝑎𝑝 is a vector that represents the reference

motion provided by motion capture (i.e., seed motion), and ℎ𝑖(𝒒) is the ith contact

constraint (∈ ℝ𝑚). The problem is to find the design variables 𝒒 to minimize a group of

human performance measures, 𝑓(𝒒), subject to the contact constraints.

 Along with providing accurate network-predicted motion with satisfied

constraints, the approaches should eliminate most of the aforementioned deficiencies in

144

the current ANN constraint implementation methods. The approaches can also be

applicable to broader regression problems. The next section details the new approaches.

5.3. Method

There are two new methods proposed in this work for considering contact

constraint implementation. The first method, called “constrained network design (CND),”

involves imposing the constraints within the training process. The second method, called

“locally adaptive network outputs (LANO),” satisfies the constraints by running an

optimization that modifies the network output(s). Each method is illustrated, and its

performance is evaluated.

5.3.1. Constrained network design (CND)

The first proposed approach is the constrained network design (CND) method. In

the CND method, constraints are considered within the optimization problem of the new

RBN training process (presented in Chapter 3). The main advantage of the CND method

is that, after the network training process is complete, the network-predicted output in the

test mode is instant. There are no time-consuming steps within this method to satisfy the

constraints. In addition, calculating the network’s design variables (𝑾) (i.e., the output

weights) that satisfy the contact constraints might improve the general network capability

for a simulated task.

With the CND method, the constraints are satisfied when 𝑾 are found in the

optimization problem of the network training process (Section 4.3). The optimization

problem in Equation 4.4 becomes constrained, and the new network training process is

145

modified as shown in Figure 5.2. The concept is that the PD contact constraints (ℎ𝑖(𝑾))

need to be satisfied for the training cases in the resulting RBN design. ℎ𝑖(𝒒) in the

original PD problem (Equation 5.1), where 𝒒 is the design variables, is presented in

Figure 5.2 as ℎ𝑖(𝑾), where 𝑾 is the design variable in the network optimization problem

(Equation 4.4).

Figure 5.2: The new RBN design training process with a modified optimization step to

produce a constrained network design (CND).

Conceptually, in Figure 5.2, the design variables (𝑾) in 𝑓(𝑾) and ℎ𝑖(𝑾) need to

be coupled. That is, there should be just one set of 𝑾. The vectors of 𝑾 are found to

minimize the error 𝑓(𝑾) while satisfying ℎ𝑖(𝑾) for all used training cases. However,

there is no direct method to formulate ℎ𝑖(𝑾) as a function of 𝑾 while 𝑓(𝑾) depends on

146

the same 𝑾. In other words, 𝑾 forms the network’s hyper-surface to predict 𝑓(𝑾), and

 ℎ𝑖(𝑾) might be in a different space from that in 𝑓(𝑾). The network predicts 𝑓(𝑾)

regardless of the violation in ℎ𝑖(𝑾). Therefore, in the current RBN design, the CND

method cannot be implemented.

In addition to the challenge explained above, when simulating the PD problem

with constraints, assuming the CND method is implemented successfully, formulating the

optimization problem as multiple problems, in order to find groups of 𝑾 vectors

separately (as proposed in Chapter 4), cannot be done. That is because all 𝑾 vectors are

dependent when the constraint is involved. Given that the PD design variables cannot be

optimized in a single optimization run, due to the CPU memory issue explained in

Chapter 4, the CND method cannot be applied to the large-scale PD tasks.

Since the CND method cannot be applied to a PD task like walking, other

methods need to be investigated. Any new method needs to avoid any potential for

memory issues when applied on large-scale PD problems. It also needs to preserve the

network accuracy.

5.3.2. Locally adaptive network outputs (LANO)

With the method of locally adaptive network outputs (LANO), the network

outputs are modified every time the network predicts outputs for a received input (i.e.,

test case). The method is called so because for every test case, the network predicted

outputs are locally changed to satisfy the constraints for that specific case. Figure 5.3

presents a descriptive diagram for the method. When the trained network is provided with

new inputs (i.e., new conditions) in the testing mode, it predicts the most appropriate

147

outputs corresponding to those inputs. Then, the contact constraints are checked for any

violation. If they are violated, the outputs are modified by running an optimization that

satisfies the violated constraints. If the constraints are not violated, the network’s outputs

are set as the final outputs. The uniqueness of the LANO method compared to many

constrained ANN methods is that it can be applied to many existing network designs.

That is simply because the LANO method is performed after the network provides its

outputs.

Figure 5.3: Flow chart for the steps of satisfying the violated constraints using the method

of locally adaptive network outputs (LANO).

In the LANO method, the optimization-based constraint satisfaction is performed

by solving the constrained optimization shown in Equation 5.2. The cost function is the

148

difference between the new control points (𝒒) and those produced by the network (𝒒𝑁𝑁).

The cost function modifies the control points but keeps the new motion as close as

possible to that predicted by the network. All the contact constraints (𝒉𝑖(𝒒(𝑾)), 𝒉𝑖 ∈

ℝ𝑚) are imposed, as shown in Equation 5.2.

 Find: 𝒒

Minimize: 𝑓(𝒒) = ‖𝒒 − 𝒒𝑁𝑁‖

Subject to: ℎ1(𝒒): ‖𝑿̃1(𝒒) − 𝑻̃1‖ ≤ 𝜀1

 ℎ2(𝒒): ‖𝑿̃2(𝒒) − 𝑻̃2‖ ≤ 𝜀2

 .

 .

 ℎ𝑚(𝒒): ‖𝑿̃𝑚(𝒒) − 𝑻̃𝑚‖ ≤ 𝜀𝑚

(5.2)

In Equation 5.2, 𝒒 is a vector representing the design variables (control points for

various body DOFs), 𝒒𝑁𝑁 is a vector representing the network-predicted outputs,

[ℎ1, ℎ2, … … , ℎ𝑚] are m contact constraints, [𝑿̃1(𝒒), 𝑿̃2(𝒒), … … , 𝑿̃𝑚(𝒒)] are vectors

representing the three-dimensional positions for m end effectors (i.e., the points on the

body that need to be in contact with some target points), [𝑻̃1, 𝑻̃2, … … , 𝑻̃𝑚] are vectors

representing the three-dimensional positions for m target points (i.e., the points with

which the end effectors need to be in contact), and [𝜀1, 𝜀2, … … , 𝜀𝑚 ≪ 1] are small values

that are set by the developer of the PD task (0.001, for example). The algorithm steps of

the LANO method are summarized for a PD problem as follows:

Step1: Run the network, based on the fed input, and provide 𝒒𝑁𝑁 (i.e., the control points).

Step2: Calculate the values of all contact constraints [ℎ1, ℎ2, … … , ℎ𝑚].

Step3: Check for existence of any constraint violation:

- If yes, go to Step 4.

- If no, set 𝒒𝑁𝑁as the final output (final motion) and terminate the

algorithm.

149

Step4: Run the optimization in Equation 5.2 to solve for 𝒒.

Step5: Set the final output motion 𝒒 and terminate the algorithm.

The LANO method can be successfully applied on the PD task. As opposed to the

tens of thousands of design variables (which represent 𝑾) in the CND method, the

LANO method includes the network outputs (𝒒), which total approximately 500-600

outputs, as its design variables. Such a number of design variables in the LANO method

is relatively small compared to the CND, and the optimization can be run with no

memory issues. In addition, when the cost function is set so the motion gravitates

toward 𝒒𝑁𝑁, the method is expected to run in seconds to provide accurate and acceptable

results along with satisfied contact constraints. Moreover, the LANO method avoids the

visually unacceptable results that sometimes occur in optimization problems because the

cost function forces the problem to provide results close to those of the ANN. The

network results are typically known to be acceptable, if it is trained on cases that are all

acceptable. Furthermore, the produced final motion based on the method always results in

satisfied contact constraints.

In terms of the limitations in the LANO method, implementation of other PD

constraints in using the method does not necessarily preserve its running speed. Applying

the method on other applications with highly violated constraints results produced from

the network affects the fast speed of the LANO method. That is because the method

requires more iterations to satisfy the violated constraints. In addition, the resulting final

motion with the LANO method can look inaccurate if the network provides poor

predicted motions (𝒒𝑁𝑁) for some extreme cases or cases outside its training space. In

such cases, the LANO method drives the final motion to be close to 𝒒𝑁𝑁.

150

5.4. Results

The illustrated LANO method is evaluated in this section on two different PD

tasks, jumping on a box and walking. The method’s accuracy and running time are

evaluated.

5.4.1. Jumping-on-the-box task

Jumping on the box is a very constrained task because the avatar’s feet and hands

should be at exact locations on top of the box under all task conditions (see Figure 5.1).

Since the box height is an input in this task, the ANN produces accurate motions, but

with obvious constraint violations in terms of the feet touching the box. The use of the

LANO method is evaluated to satisfy the contact constraints for this task.

In the jumping-on-the-box task, the box height is the only input parameter, and

thus few training cases are available to simulate the task. After the network is trained

with three training cases, which include the box heights of 50 centimeters (cm), 70 cm,

and 100 cm, the network is tested on two cases. The box height in the new test cases are

60 cm and 85 cm, respectively. For each case, the motion results of the LANO method

are compared with those produced from PD and the network (𝒒𝑁𝑁). Figure 5.4 presents

the motion produced from the three models (PD, ANN, and ANN-LANO) for case 1

(height equal 60 cm). The figure includes the start frame (Frame 1), before jumping is

started, middle motion frame (Frame 2), and the end frames (Frame 3), after the avatar

finishes the task on top of the box.

151

Figure 5.4: Results comparison for the motion produced from predictive dynamics (PD),

the new RBN design “ANN,” and the new RBN design with the locally adaptive network

outputs (LANO) constraint satisfaction method “ANN- LANO” for test case 1 (height

equal 60 cm) in the jumping-on-the-box task.

As in the PD result, the network with the LANO method produces motion with no

violation, which is evident by the feet in frame 3 reaching the top of the box exactly. The

results of the ANN in frame 3, however, show constraint violations with the right foot

and left hand slightly off of the box. The LANO method successfully fixes the contact

constraints that are violated in the ANN results. The running time for the method in this

152

case is approximately 2 seconds, which is close to real time. The PD run time is

approximately 3.7 minutes, while the ANN runs in approximately real time (0.5 second).

With respect to the general resulting motion in case 1, the results of the ANN and

the ANN with LANO method in frame 3 is slightly different from that produced by PD,

but all results are accepted and comparable in terms of visual appearance. The prediction

errors with the implemented LANO method are also small, based on visual subjective

evaluation, as in the other simulated tasks in Chapter 4.

With respect to case 2, Figure 5.5 presents the results comparison for the same

three models (PD, ANN, and ANN- LANO). The box height in this case is 85 cm. The

general appearance of the motion in frames 2 and 3 indicates similar motions produced

from the three models. More constraint violation, however, obviously occurs in the

motion produced from the ANN, where the feet and left hand are away from the box. On

the other hand, the ANN with LANO method provides results with satisfied constraints

where the hand and feet are exactly on the top of the box. Its result also matches that

produced from the PD. The running time for the method is approximately 3 seconds. The

PD run time is approximately 2.7 minutes, while the ANN runs in 0.5 second. Based on

the presented results, the method of LANO is effective in satisfying the violated contact

constraints when applied to the jumping-on-the-box task. The optimization running speed

is also fast. The LANO method is next evaluated on another common task, the walking

task.

153

Figure 5.5: Results comparison for the motion produced from predictive dynamics (PD),

the new RBN design “ANN,” and the new RBN design with the locally adaptive network

outputs (LANO) constraints satisfaction method “ANN- LANO” for test case 2 (height

equal 85 cm) in the jumping-on-the-box task.

5.4.2. Walking task

In a task like walking with a weapon, the contact constraint violation is less

obvious than that in the jumping-on-the-box task. Unlike the changeable box height, the

hands on the weapon constraints have slight changes when different weapons are used.

Hence, the visual constraint violation is not clear in most cases. However, the contact

constraints still need to be satisfied, so the feet do not penetrate the ground and the hands

154

stay exactly on the weapons during the motion. The same trained network model that is

used in Chapter 4 for the walking task, which includes 399 training cases, is used in this

section for the evaluation of the LANO method.

When the LANO method is applied on the walking task, the optimization running

time is too long. The optimization takes approximately 7.6 minutes on average when the

method is applied on five test cases. Although the constraint violation with different box

heights is much larger than that in the ground penetration and the hands on the weapon

constraints in the walking task, the LANO optimization run time in the walking task is

much larger. The reason for the long running optimization is that the gradient-based

optimization method (Gill, Murray, & Saunders, 2002) spends a large number of

iterations with too-small step sizes. When the initial guess is close to the final solution,

the optimization usually starts with these small step sizes. In addition, the fundamental

PD source code that is used to develop the walking task is different from that used to

develop the jumping-on-the-box task. Depending on the implementation procedures,

number of constraints, and task complexity, different versions of the PD source code can

have different optimization run time when simulating the motion while satisfying the

constraints. Thus, that is another reason for the long optimization run in the walking task.

Therefore, other modified LANO algorithms need to be tested for the walking task to

investigate faster optimization results. The primary modification involves the cost

function.

5.4.2.1 Modified locally adaptive network output(s) (modified-LANO)

The difference between LANO (Equation 5.2) and its modified version (Equation

5.3) is that the modified method adds the joint torque function (from the PD cost

155

function) to the method’s cost function. The torque function is included, because the

RBN is trained using cases that are created based on PD that includes this cost function.

Thus, the network-predicted motions follow the same prediction behavior that is used in

PD with the torque function. Therefore, the new cost function in the modified-LANO

should speed up the running speed. In the modified method, the following optimization

problem is solved subject to the contact constraints:

 Find: 𝒒

Minimize: 𝑓(𝒒) = ‖𝒒 − 𝒒𝑁𝑁‖ + 𝑓(∑ 𝑗𝑜𝑖𝑛𝑡 𝑡𝑜𝑟𝑞𝑢𝑒𝐷𝑂𝐹𝑠
1)

Subject to: ℎ1: ‖𝑿̃1(𝒒) − 𝑻̃1‖ ≤ 𝜀1

 ℎ2: ‖𝑿̃2(𝒒) − 𝑻̃2‖ ≤ 𝜀2

 .

 .

 ℎ𝑚: ‖𝑿̃𝑚(𝒒) − 𝑻̃𝑚‖ ≤ 𝜀𝑚

(5.3)

Although the modified-LANO method can save running time while satisfying the

contact constraints, it might experience some limitations. The used optimization,

Equation 5.3, can produce final optimal motion that looks inaccurate and too different

from the network seed motion (𝒒𝑁𝑁). The reason for the different final motions is that the

PD optimization is non-quadratic since it involves the torque cost function. Hence, the

optimization could produce poor locally optimum solutions, which are not all necessarily

accurate.

5.4.2.2 Network output(s) as initial guess (NOIG)

The network output as initial guess (NOIG) method uses the network-predicted

output (𝒒𝑁𝑁) as the initial guess (IG) and the seed motion in the optimization in order to

help with faster convergence to the final optimal solution. With the NOIG method, the

156

optimization starts from an initial solution close to the final one, and the new motion in

the cost function is gravitated toward that initial solution. The method uses the same cost

function used in the LANO method (Equation 5.2) with the use of the network-predicted

output (𝒒𝑁𝑁) as the IG. Instead of having one default initial motion for all input cases, the

NOIG method uses the 𝒒𝑁𝑁 as the initial motion (i.e., starting point in the optimization)

for each new case.

With respect to the NOIG method limitations, the 𝒒𝑁𝑁 used as IG does not always

assure running the optimization quickly, because of the nonlinear behavior of some of the

constraints. As with the LANO method, even with well-predicted 𝒒𝑁𝑁, the optimization

could iterate to large numbers with small step sizes.

5.4.2.3 Methods comparison

For the walking task, the modified-LANO and NOIG methods are compared

along with the original LANO method. As stated, since the task-violated constraints are

difficult to show visually, the methods are compared in terms of: 1) the changes in the

prediction errors relative to the PD results, both root-mean square error (RMSE) and

mean-absolute error (MAE), 2) running time for the optimization to provide the final

motion, and 3) the amount of violation in other important excluded PD constraints. The

results from all methods are compared along with those produced by the default network

(without the constraint-satisfaction steps). The visual motion results are excluded from

the comparison because the motions produced from all the methods look similar; the

violated constraints are difficult to see.

Table 5.1 presents the comparison results for use of the LANO method and its

derivatives (modified-LANO and NOIG). The presented results are the average results

157

for the methods when tested on five test cases. The table also includes the results from

the network that is presented in Chapter 4, which has no constraints implemented in its

design, as a reference for the running time and errors. To appreciate the results of all

methods presented in the table, note that the average running time for the original PD

problem (with all constraints considered) among the five test cases is 8.4 minutes. Even

though the network-predicted outputs (𝒒𝑁𝑁) are used as IGs, which are close to the PD

final motions (based on the subjective and objective evaluations of the visual motion

results shown in Chapter 4), the original PD optimization still takes a relatively long time

to satisfy all constraints.

Table 5.1. Comparison results for the method of locally adaptive

network outputs (LANO) and its derivatives when applied on five test

cases in a predictive dynamic (PD) walking task.

Comparison

method

ANN LANO Modified-

LANO

NOIG

RMSE 0.0193 0.06 0.0233 0.0187

MAE 0.0123 0.033 0.0142 0.0119

Run Time <1 sec 7.6 min 5.4 min 2.9 min

Although the results of the LANO method show that it slightly decreases the

running time, compared to running the full PD problem, and satisfies the contact

constraints, it increases the prediction errors. Compared with the errors provided by direct

use of ANN-predicted outputs, which have some violated constraints, both error types are

increased for the resulting motion when the LANO method is used, as shown in Table

5.1. The reason for that error increase is that using an ANN-predicted motion as the seed

motion drives the optimization cost function towards that motion. Hence, the resulting

final motion can differ from that obtained when the original default seed motion is used.

158

Although the seed motion provided by the network has slight errors compared to the final

optimal one with satisfied constraints, the optimization runs for an average of 5.4 minutes

for the reasons described earlier.

In Table 5.1, both modified LANO methods (modified-LANO and NOIG) show

superior results over the original method. When the two modified methods are compared,

the results of using NOIG show a superior advantage with significantly less running time

and slightly smaller prediction errors. Along with satisfied contact constraints, the NOIG

method shows error reduction over that provided directly by the ANN, because the

motion results are similar to satisfied constraints produced from the NOIG method.

Although the optimization running time in all presented constraint satisfaction methods

takes a longer time than expected, the NOIG method is considerably the fastest. Based on

the presented results, the NOIG method saves 62% and 46% of the running time of the

LANO and modified-LANO, respectively. Therefore, the use of the NOIG method in the

walking task is better than the others as far as the running times and prediction errors. On

the other hand, since the presented LANO method and its derivatives do not run instantly

in some PD tasks like walking, there is still the need to implement the constrained

network design, which is illustrated in Section 5.3.1, to produce real time predicted-

motions with satisfied constraints.

The results in Table 5.1 indicate that the NOIG method does not significantly

improve the prediction accuracy. Given the slight error changes when all contact

constraints are met with NOIG, it can be concluded that the 𝒒𝑁𝑁 with no method for

constraint satisfaction has slight constraint violations. Thus, although the network does

159

not include constraint satisfaction steps in its design, the new ANN design (Chapter 3 and

4) provides acceptable results for the PD motion problems.

The presented LANO method and its derivatives are introduced to satisfy the

contact constraints. Thus, the resulting final output (motion) is guaranteed to satisfy these

constraints. However, any violations in other PD constraints are also important to monitor

and evaluate for some types of these constraints. For the rest of this section, some of the

excluded violated constraints are evaluated, and the performances of the constraint

satisfaction methods are compared for these constraints.

The PD problem involves many types of constraints to be studied. Studying the

violations in the most critical constraints can provide additional insight into the

performance of the LANO methods on the excluded constraints. Among these

constraints, the zero moment point (ZMP) constraints, which are responsible for the body

balance, are most critical. This is because the ZMP violation is important for accurate

motion results. In addition, implicit evaluation of the ZMP constraints considers the

calculations of the torque limit constraints for various DOFs. More information about the

ZMP constraint and its formulations can be found in the literature (Xiang, Arora, &

Abdel-Malek, 2010; Xiang, Arora, Rahmatalla, & Abdel‐Malek, 2009).

The ZMP constraints are evaluated for the violations produced from the new

constraint methods together with that from the default ANN with no constraint checks. In

the walking task, there are 64 ZMP constraints in total. For the same five test cases

evaluated earlier, the modified LANO methods are compared in terms of the number of

violations in the ZMP constraints, as well as the maximum violation in the violated ones

(Table 5.2).

160

Table 5.2. Zero moment point (ZMP) constraint violations

(averaged values for five test cases) produced from the

modified locally adaptive network outputs (LANO) methods

applied in predictive dynamic (PD) walking task.

Comparison method ANN Modified-LANO NOIG

Number of Violations 11.2 11.8 11.6

Max. Violation -0.78 -0.09 -0.11

Table 5.2 presents a summary of the violations in the ZMP constraints. Note that

all ZMP constraints have the same upper and lower limits between 0 and infinity. Hence,

the amounts of violation for all of them are comparable. The results show highly

comparable performance for the modified LANO methods in terms of number of

violations and the maximum violation. The NOIG method produces comparable

violations, on average, but slightly higher maximum violation value. The results from the

default ANN provide a lower number of violations and larger maximum value. Compared

to those obtained from modified LANO methods, the maximum violation in the ANN is

too large. Therefore, the new constraint implementation methods (modified LANO

methods) help reduce the violation in one of the important inequality constraints. This

trend should exist for other excluded constraints, especially the joint angle and torque

limits of various DOFs since these constraints are easier to satisfy than the ZMP.

Table 5.3 presents the same evaluation, but for the individual test cases, in order

to enhance the conclusion drawn about the performance of the new methods. In Table

5.3, the default ANN with no constraints shows random behavior in the number of

violated ZMP constraints and their maximum values. Even with many ZMP violations,

the modified-LANO method provides stable behavior in terms of producing relatively

small maximum violation in all test cases. The NOIG method also shows a trend similar

161

to that in the modified-LANO method, which enhances the conclusion regarding the

improved performance over the network model with no constraint satisfaction method.

When the constraint satisfaction method is used, it satisfies the contact constraints and

reduces the violations in the excluded constraints.

Table 5.3. Detailed zero moment point (ZMP) constraint violations produced from

the modified locally adaptive network outputs (LANO) methods applied on five

test cases in predictive dynamic (PD) walking task. Each test case represents a

combination of loading and ROM conditions.

Case number Comparison method ANN Modified-LANO NOIG

Case 1
Number of

Violations

2 10 7

Max. Violation -0.01 -0.03 -0.01

Case 2
Number of

Violations

21 16 16

Max. Violation -0.78 -0.05 -0.05

Case 3
Number of

Violations

13 15 15

Max. Violation -0.07 -0.03 -0.11

Case 4
Number of

Violations

17 16 16

Max. Violation -0.54 -0.09 -0.07

Case 5
Number of

Violations

3 2 4

Max. Violation -0.02 -0.01 -0.03

The results of the walking task show that the new modified LANO methods for

constraint implementation are successful in providing satisfied contact constraints for the

PD problem. The implicit correction of the produced motion when the contact constraints

are satisfied allows the reduction of violations in other excluded critical constraints as

well. Such reduced violations are obvious in the ZMP constraints, which involve implicit

satisfaction of the joint torque limits.

162

5.5. Discussion

This chapter proposes two main approaches for the implementation of PD contact

constraints within the new RBN design. The first one is called the CND method and

incorporates constraints within the network training process. The second one is called the

LANO and is applied after the network provides its outputs.

The CND method is not evaluated for any PD task, because the method requires

all design variables in the large-scale PD task to be found in a single optimization run.

That cannot be done since the software experiences memory issues during such a task.

Therefore, the method is not evaluated on the PD task, but is expected to help reduce the

constraint violations, if any exist. The method could also enhance the general network-

prediction ability and improve the violation in other excluded constraints like the joint

angle and torque limits of various DOFs.

The results of implementing the LANO method and applying it for the PD tasks

are evaluated. Along with satisfying the constraints, the network performance (in terms of

prediction accuracy) with the method is improved over that without the method. The

method’s success is emphasized in terms of running times and prediction errors,

especially for the jumping-on-the-box task, where the method satisfies the constraints

within 2-3 seconds. As shown by the slow running time when the LANO method is

applied for the walking task, it is important to emphasize that the running time for the

method in the presented tasks are relative. The time may differ significantly from one

task to another or for various versions of the task. The task could have different versions

because the task developer keeps updating the task based on user feedback to improve the

163

task and fix some odd results. The task’s constraint limits might be relaxed so the

optimization needs less running time to satisfy all the constraints.

Modified LANO methods (modified-LANO and NOIG) are, then, introduced to

improve the accuracy level and running time for the walking task. Although the results of

the methods vary, both show improved results in terms of running time and accuracy

when applied to the walking task. In addition, the violations in the ZMP constraints,

which are excluded from the optimization, are evaluated. The ZMP violations are

significantly reduced for both methods, when compared to those produced from the

default ANN with no constraint satisfaction procedures.

The use of the new aforementioned constraint implementation methods (CND and

LANO) can be applied to all ANN designs, including those that do not allow the

implementation of constrained optimization methods. Many existing ANN designs,

including the new design that is developed in this work (Opt_RBN), include

unconstrained optimization algorithms, and there is no direct method to change these

designs to accept constraint implementation. Therefore, the constrained optimization

proposed in the new methods can be modified to an unconstrained one in order to be

applied in such unconstrained ANN designs. That is especially needed for the CND

method, since it is applied within the network training process. Thus, the optimization in

the CND method can be modified to be solved using unconstrained optimization

algorithms.

The change can be performed using various methods like sequential

unconstrained minimization techniques and augmented Lagrangian methods (Arora,

2004). As one of the sequential unconstrained techniques, the penalty function method

164

(Fiacco & McCormick, 1990). The penalty function method is simple to implement.

Moreover, the method is expected to achieve fast and acceptable optimal solutions

because of the provided IG for W elements found in the network training process (details

in Chapter 3).

The idea of the penalty function method is that it forms a composite

function Φ(𝑾, 𝑟), Equation 5.4, that contains the original cost, 𝑓(𝑾) in Figure 5.2, for

example, and constraint functions together. The parameter 𝑟 is added to penalize the

composite function for constraint violation. The penalty is larger when the violation is

larger. Then, the composite function is minimized using unconstrained optimization

methods that are used for ANNs. The penalty 𝑟 is adjusted every time after the composite

function is minimized. The procedure is repeated until the function reaches its optimal

point and no further improvement is possible. In other words, when there is a constraint

violation, the original cost function 𝑓(𝑾) is penalized by adding positive

value 𝑃(𝒉(𝑾), 𝑟). The maximum constraint violation of a constraint ℎ𝑖
+(𝑾) is only

positive when that constraint is violated.

 Minimize: Φ(𝑾, 𝑟) = 𝑓(𝑾) + 𝑃(𝒉(𝑾), 𝑟) (5.4)

𝑃(𝒉(𝑾), 𝑟) = 𝑟 ∑[ℎ𝑖

+(𝑾)]2

𝑚

𝑖=1

; ℎ𝑖
+(𝑾) = max (0, ℎ𝑖(𝑾)) (5.5)

In Equation 5.4, Φ(𝑾, 𝑟) is the composite (i.e., transformation) function, 𝑓(𝑾) is

the cost function, 𝑃(𝒉(𝑾), 𝑟) is the penalty function, 𝒉(𝑾) is the set of constraints, 𝑾 is

a matrix representing the design variables (network outputs weights), and 𝑟 is a scalar

penalty parameter (𝑟 > 0). In Equation 5.5, 𝑚 is the number of constraints and ℎ𝑖
+(𝑾) is

the maximum constraint violation (ℎ𝑖
+(𝑾) ≥ 0).

165

With the implementation of unconstrained techniques like the penalty function

method to solve constrained optimization problems, the use of ANN designs for problems

with constraints is broader and more applicable to new applications. In order to allow the

real-time prediction with satisfied constraint from ANNs, future work need to entail

implementing the CND method as an unconstrained method using the penalty method or

other approaches like the Lagrangian. Successful implementation of such approaches

within the ANN training process could expand the use of the ANN designs to predict

applications with critical constraints to satisfy.

In future work, hybrid use of CND and LANO methods within the same network

design is worth exploring. In the hybrid design, the CND method (shown in Figure 5.2) is

first applied to the network training process to consider constraint satisfaction for the

provided training cases. Then, the LANO method (Equation 5.2) is applied in the test

mode after the network predicts its outputs to satisfy any violated constraints. In the

result, while the constraints are always satisfied, the network running time with both

methods implemented might be faster than that with the LANO method only. The reason

for the faster run is that the constraint violations, if any, in the predicted network outputs

are smaller than those without the CND method. The method already satisfies the

constraints within the network design; this reduces the number of violated constraints,

their occurrence, and their values when tested for new cases.

All illustrated methods for constraint implementation consider only the contact

constraints (equality constraints) in PD tasks. Future work should evaluate the

incorporation of other constraints and the effects on the accuracy of the final outputs and

the network running time. For example, constraints like joint torque limits might require

166

more time to be satisfied. Therefore, applying the LANO method on other applications

might not result in the same speed because of the existence of highly violated constraints

produced from the ANNs. In addition, future work may investigate alternative

approaches like considering the cost function to be one of the constraints, which could

reduce the optimization running time. Instead of optimizing the difference between the

network output and the final motion to the lowest possible value, the difference is set to a

small value that can be obtained quickly. On the other hand, the heuristic small value is

hard to guess for the PD application because the difference value is calculated for a

relatively large number of outputs.

CHAPTER VI

ARTIFICIAL NEURAL NETWORK AS A TOOL FOR SIMULATION

ANALYSIS

6.1. Introduction

In addition to providing a method for simulating motion and for enhancing predictive

dynamic (PD), artificial neural networks (ANNs) can provide unique insight into the

details of human motion. The calculated radial-basis network (RBN) parameters provide

useful information about the task-critical training cases, inputs, and outputs. The PD

motion problem presented in Chapter 4 is illustrated in this chapter as an example to

investigate this hypothesis. The parameters’ values, which are found when the RBN is

trained on a task, can indicate the most significant training cases for the network

performance, as well as the inputs and outputs with the most significant variation (i.e., the

critical inputs and outputs for the network design). In this chapter, the following

parameters are analyzed, and their relevance to the simulated task is detailed: the basis

functions, basis function centers (𝑼𝑼), basis function spreads (𝝈𝝈), output weights (𝑾𝑾), task

inputs (𝒙𝒙), and task outputs (𝒚𝒚).

The work in this chapter suggests that output weights (𝑾𝑾) can be used to

determine the basis functions that cause the greatest reduction in the network test error.

These basis functions then indicate the training cases that have the greatest effect on

network performance. That is, 𝑾𝑾 and the corresponding basis functions tend to point

towards the most significant training cases, and such insight can be helpful for studying

167

human performance. The inputs with the most change in value can be extracted from 𝑼𝑼.

These inputs are specified as the most dominant inputs, because the inputs with most

change in value among the vectors of 𝑼𝑼 have the greatest effect on the task outputs. The

outputs with the most change in value, and their corresponding degrees of freedom

(DOFs) can also be identified using the training cases that are used to create the

network’s basis functions. This chapter’s primary new contribution is the use of ANN

and its associated parameters as a tool for task analysis.

Section 6.2 addresses the fundamental implications of the basis function values,

the basis-function centers (𝑼𝑼), the basic-function spreads (𝝈𝝈), the output weights (𝑾𝑾), the

task inputs (𝒙𝒙) with the most change in value, and the task outputs (𝒚𝒚) with the most

change in value. Section 6.3 then uses these findings to analyze the tasks of walking, and

going-prone.

6.2. Method

The network parameters are all found in the training process. In this section, we

analyze the general meanings of these parameters. Methods for concise evaluation of the

most significant training cases and task features (inputs and outputs) are also provided.

6.2.1. Interpretation of neural network parameters

The ANN parameters are divided into two components: the basis functions and

their associated parameters (𝝈𝝈 and 𝑼𝑼), and the output weights (𝐖𝐖). Brief descriptions and

sensitivity analysis for these components are provided.

168

6.2.1.1 Basis function and its parameters

In the new RBN design proposed in Chapters 3 and 4, the basis functions are set

using the orthogonal least square (OLS) method. The method sets the basis functions

using the significant training cases. In this context, the significant training cases are those

that contribute the most to reducing the training error (i.e., the error in the network-

predicted outputs for the training cases). Within the network design, the most significant

basis functions can be determined as those that contribute the most in reducing the

network testing error. Hence, knowing the most significant basis function provides a

direct indication of the most significant training case in terms of the effect on the network

performance (i.e., the most relative reduction in the test error with respect to the other

basis functions).

In order to specify the most significant basis functions, there is a need to

understand the effect of each basis function on the network-predicted output. Equation

6.1 presents the calculation of the qth basis function output (ℎ𝑞𝑞(𝒙𝒙)). All basis function

outputs (𝒉𝒉) are used in weighted sums to produce the output (𝑦𝑦𝑛𝑛) in Equation 6.2. The 𝑦𝑦𝑛𝑛

presents the nth output, where all N outputs are calculated using the same 𝒉𝒉, but using

different vectors of output weights 𝒘𝒘𝑛𝑛.

ℎ𝑞𝑞(𝒙𝒙) = exp�

−�𝒙𝒙 − 𝒖𝒖𝑞𝑞�
2

2𝜎𝜎𝑞𝑞2
� , [𝑞𝑞 = 1, 2, . . ,𝑄𝑄] (6.1)

 𝑦𝑦𝑛𝑛 = 𝒉𝒉 ∙ 𝒘𝒘𝑛𝑛 , [𝑛𝑛 = 1, 2, . . ,𝑁𝑁] (6.2)

The variation of 𝑦𝑦𝑛𝑛 with respect to the qth basis function output ℎ𝑞𝑞 (i.e., the

sensitivity of 𝑦𝑦𝑛𝑛with respect to ℎ𝑞𝑞) can be written as follows:

169

 𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕ℎ𝑞𝑞

= 𝑤𝑤𝑛𝑛𝑛𝑛 (6.3)

Therefore, a change in 𝑦𝑦𝑛𝑛 due to a small change 𝛿𝛿ℎ𝑞𝑞in the qth basis function

output is given as:

𝛿𝛿𝑦𝑦𝑛𝑛 =

𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕ℎ𝑞𝑞

𝛿𝛿ℎ𝑞𝑞 = 𝑤𝑤𝑛𝑛𝑛𝑛𝛿𝛿ℎ𝑞𝑞 (6.4)

Equation 6.4 indicates that the effect of ℎ𝑞𝑞 on 𝑦𝑦𝑛𝑛 can be computed, since the 𝑤𝑤𝑛𝑛𝑛𝑛

value is known from the training process. Among the basis function outputs (𝒉𝒉), ℎ𝑞𝑞 with

the largest 𝑤𝑤𝑛𝑛𝑛𝑛 value has the greatest effect on 𝑦𝑦𝑛𝑛. Consequently, that basis function is

the most significant one in terms of reducing the test error in the network-predicted

outputs. The training cases associated with the most significant functions are also

determined as the most significant cases for the network performance. For the simulated

PD tasks, determining the most significant training cases for a task would help provide

suggestions for the cases to be used for the task validation. These significant cases can be

considered the typical cases for the task when it is being evaluated. Moreover, knowing

the significant training cases provides recommendations for potential practical training

protocols when the task is performed by real warfighters. Specifically, the fighter is

trained on these significant training cases instead of many more random cases.

In order to test the relationship discussed above for extracting the most significant

basis function from 𝑤𝑤𝑛𝑛𝑛𝑛, computational experiments are run in the context of task

simulations. Each basis function is removed, one by one, and the effect on test error is

noted. The significance of the existence of a basis function for the network is calculated

by finding the increase in the test error in the network-predicted outputs when that

170

function is removed. Consequently, the functions that their removal cause the largest

increase in the test error are specified as the most important ones.

6.2.1.1.1 Basis function centers (𝑼𝑼)

The basis function centers (𝑼𝑼) are set by the OLS method as the inputs of the

specified significant training cases (details are in Section 3.2.3). The OLS method

inherently determines this significance based on the effects on training error. Therefore,

the vectors of 𝑼𝑼, which represent sets of input x, can indicate the most critical inputs. The

specified most critical inputs are those for which a change causes the most change in the

outputs. Among the vectors of 𝑼𝑼, the input elements with the most change in value are

specified as the most critical inputs for the simulated problem. The method used to

extract the inputs with the most change in value from 𝑼𝑼 is detailed in Section 6.2.2.

6.2.1.1.2 Basis function spreads (𝝈𝝈)

The basis function spread 𝜎𝜎𝑞𝑞 is part of the basis function output calculation

(Equation 6.1). Within the network, each 𝜎𝜎𝑞𝑞 has its own effect on the calculation of the

network output (𝑦𝑦𝑛𝑛), which can be written as a function of basis function spreads 𝜎𝜎 as

follows:

𝑦𝑦𝑛𝑛 = � exp�

−�𝒙𝒙 − 𝒖𝒖𝑞𝑞�
2

2𝜎𝜎𝑞𝑞2
�𝑤𝑤𝑛𝑛𝑛𝑛

𝑄𝑄

𝑞𝑞=1

 , [𝑛𝑛 = 1, 2, . . ,𝑁𝑁] (6.5)

The variation of 𝑦𝑦𝑛𝑛 with respect to the qth basis function spread 𝜎𝜎𝑞𝑞 can be written

as follows:

 𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕𝜎𝜎𝑞𝑞

= exp�
−�𝒙𝒙 − 𝒖𝒖𝑞𝑞�

2

2𝜎𝜎𝑞𝑞2
��

�𝒙𝒙 − 𝒖𝒖𝑞𝑞�
2

𝜎𝜎𝑞𝑞3
�𝑤𝑤𝑛𝑛𝑛𝑛 (6.6)

171

Then, a change in 𝑦𝑦𝑛𝑛 due to a small change 𝛿𝛿𝜎𝜎𝑞𝑞in the qth basis function spread is

given as

𝛿𝛿𝑦𝑦𝑛𝑛 =

𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕𝜎𝜎𝑞𝑞

𝛿𝛿𝜎𝜎𝑞𝑞 = exp�
−�𝒙𝒙 − 𝒖𝒖𝑞𝑞�

2

2𝜎𝜎𝑞𝑞2
��

�𝒙𝒙 − 𝒖𝒖𝑞𝑞�
2

𝜎𝜎𝑞𝑞3
�𝑤𝑤𝑛𝑛𝑛𝑛 𝛿𝛿𝜎𝜎𝑞𝑞 (6.7)

 The change 𝛿𝛿𝑦𝑦𝑛𝑛 is not only affected by the direct change in 𝜎𝜎𝑞𝑞, but also by the

change in the distance �𝒙𝒙 − 𝒖𝒖𝑞𝑞�
2

 and the output weight 𝑤𝑤𝑛𝑛𝑛𝑛. When either �𝒙𝒙 − 𝒖𝒖𝑞𝑞�
2

 or

𝑤𝑤𝑛𝑛𝑛𝑛 is zero, the change of the others does not matter, since 𝑦𝑦𝑛𝑛 will then be zero. When

the value of 𝜎𝜎𝑞𝑞 is zero, the 𝑦𝑦𝑛𝑛 value is undefined and 𝛿𝛿𝑦𝑦𝑛𝑛 is unknown. Therefore, the

value of 𝜎𝜎𝑞𝑞 should not be zero in order to have a finite effect on 𝑦𝑦𝑛𝑛, and for stable

network performance. In general, the effect of 𝜎𝜎𝑞𝑞 on 𝑦𝑦𝑛𝑛 can be computed after the

network is trained, where all parameters are known. In Equation 6.7, the values 𝒖𝒖𝑞𝑞, 𝜎𝜎𝑞𝑞,

and 𝑤𝑤𝑛𝑛𝑛𝑛 are known and constant. Then, 𝛿𝛿𝑦𝑦𝑛𝑛 for a change in 𝜎𝜎𝑞𝑞 is computed for given 𝒙𝒙 in

all training cases to evaluate the sum of all changes. Among the basis function spreads

(𝛔𝛔), 𝜎𝜎𝑞𝑞 with the largest sum value has the greatest effect on 𝑦𝑦𝑛𝑛.

The calculation of the basis function spreads (𝝈𝝈) depends on the size of the

simulated problem (the ratio of the number of training cases to inputs) and on the

distance between neighboring training cases (as shown in Equation 4.3). The ratio of

number of training cases to number of inputs is constant for a given problem. Therefore,

each 𝜎𝜎𝑞𝑞 indicates the uniqueness of the corresponding training case in terms of location

(as illustrated in the example in Figure 2.3). With respect to the distance calculation

(shown in Equation 4.2), if a training case is far from the closest neighboring case (each

training case represents a vector with the size of inputs in the multi-dimensional training

space), then the corresponding 𝜎𝜎𝑞𝑞 is relatively large. However, the relatively larger 𝜎𝜎𝑞𝑞

172

does not indicate any significance with respect to the associated basis function or

practical implications for the simulated task components. Larger 𝜎𝜎𝑞𝑞 does not necessarily

accompany the more significant basis function over the others, because the OLS method

creates orthogonal basis functions within a new space that differs from the original

training space. Thus, the significance of a training case and its location changes every

time after the addition of new basis function. The significance of the 𝜎𝜎𝑞𝑞 value is also

changed with the associated basis function in the new orthogonal space.

Although many basis functions generally overlap to cover the same portion of the

training space, the ones with larger 𝜎𝜎s cover more area in the training space. Hence, the

basis function with a relatively larger 𝜎𝜎𝑞𝑞 produces non-zero outputs over a larger region

in the training space (i.e., with larger 𝜎𝜎𝑞𝑞 , the non-zero basis function output is provided

within a relatively large distance from its center 𝒖𝒖𝑞𝑞). However, that does not indicate any

absolute significance of that basis function over the other ones. The basis function that

covers relatively more space portion than other functions does not specify any practical

implications, because that basis function can overlap with many other functions that have

more contributions on the produced output. In addition, the significance of either the

basis function location or the associated training case that is used to create that function

cannot be drawn from the spread value in the orthogonal space.

In general, 𝜎𝜎𝑞𝑞 plays a significant role in the network performance to provide the

proper generalization for the simulated problem (see Chapter 2 for details regarding the

generalization). Larger 𝜎𝜎𝑞𝑞 values produce wider functions, which leads to smoother

output (i.e., simpler regression surface). In such a case, an under-fitting issue might occur

if the resulting model is simpler than it should be. On the other hand, smaller 𝜎𝜎𝑞𝑞 values

173

produce a narrower function, which leads to less smooth output (i.e., more complex

regression surface). In such a case, an over-fitting issue might occur if the resulting

model is more complex than it should be (see Chapter 2 for details on under-fitting and

over-fitting). Therefore, along with the setting of other network parameters, setting 𝜎𝜎𝑞𝑞 is

critical to produce a network model that considers the most efficient trade-off between its

complexity and proper performance.

In summary, the 𝝈𝝈 values generally indicate the space portions that various

network basis functions cover relative to each other, as well as specifying the more and

less smooth portions of the training space (i.e., regression hyper-surface). Although the

relative significance of 𝜎𝜎𝑞𝑞 for the change in 𝑦𝑦𝑛𝑛 can be computed, the significance of 𝜎𝜎𝑞𝑞

does not provide definite useful conclusions regarding the task components (critical

inputs, outputs, or basis functions).

6.2.1.2 Output weights (𝑾𝑾)

As shown in Equation 6.2, each weight vector in 𝑾𝑾 = [𝒘𝒘1,𝒘𝒘2, … ,𝒘𝒘𝑁𝑁]𝑇𝑇) is

responsible for providing the weighted values of 𝒉𝒉 to produce one of the network outputs

(𝑦𝑦𝑛𝑛) (𝒚𝒚 ∈ 𝑅𝑅𝑁𝑁 as shown in Figure 2.1). Consequently, the value of each element (𝑤𝑤𝑛𝑛𝑛𝑛) in

the output weight vector (𝒘𝒘𝑛𝑛) indicates the relative significance of its associated basis

function on the change in 𝑦𝑦𝑛𝑛. As shown in Section 6.2.1.1, the basis function that

corresponds to the largest 𝑤𝑤𝑛𝑛𝑛𝑛 value has the greatest effect on 𝑦𝑦𝑛𝑛. In other words, that

basis function is the most significant one in terms of reducing the test error in the

network-predicted outputs. In the result, the value of 𝑤𝑤𝑛𝑛𝑛𝑛 can be used to indicate the

training case associated with the most significant function as the most significant case.

174

With respect to analyzing the effect of individual 𝑤𝑤𝑛𝑛𝑛𝑛 on 𝑦𝑦𝑛𝑛, the variation of 𝑦𝑦𝑛𝑛

with respect to the qth output weight 𝑤𝑤𝑛𝑛𝑛𝑛 can be written as follows:

 𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕𝑤𝑤𝑛𝑛𝑛𝑛

= ℎ𝑞𝑞 (6.8)

Therefore, a change in 𝑦𝑦𝑛𝑛 due to a small change 𝛿𝛿𝑤𝑤𝑛𝑛𝑛𝑛 in the qth output weight is

given as:

𝛿𝛿𝑦𝑦𝑛𝑛 =

𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕𝑤𝑤𝑛𝑛𝑛𝑛

𝛿𝛿𝑤𝑤𝑛𝑛𝑛𝑛 = ℎ𝑞𝑞𝛿𝛿𝑤𝑤𝑛𝑛𝑛𝑛 (6.9)

The relative effect of 𝑤𝑤𝑛𝑛𝑛𝑛 for the change in 𝑦𝑦𝑛𝑛 is directly proportional to the basis

function output ℎ𝑞𝑞, which changes for every training case. Then, 𝛿𝛿𝑦𝑦𝑛𝑛 for a change

in 𝑤𝑤𝑛𝑛𝑛𝑛 is computed for given 𝒙𝒙, which changes ℎ𝑞𝑞, in all training cases to evaluate the

sum of all changes. With this calculation, 𝑤𝑤𝑛𝑛𝑛𝑛 with the largest sum value has the greatest

effect on 𝑦𝑦𝑛𝑛. On the other hand, since the 𝑤𝑤𝑛𝑛𝑛𝑛 value can be in positive and negative

values, determining the net change in 𝑦𝑦𝑛𝑛 depending on the value of 𝑤𝑤𝑛𝑛𝑛𝑛 is more difficult.

That is because the 𝑦𝑦𝑛𝑛 value is produced as a weighted sum of all ℎ𝑞𝑞multiplied by their

associated weights 𝑤𝑤𝑛𝑛𝑛𝑛. Even if the weight vectors in 𝑾𝑾 are compared to extract the

relative change in the outputs, 𝒘𝒘𝑛𝑛cannot be used to indicate the relative significance of

the corresponding output compared to other outputs due to the independent calculation of

each 𝒘𝒘𝑛𝑛 from the other vectors.

With respect to the network, having a relatively large 𝑤𝑤𝑛𝑛𝑛𝑛 value indicates the

existence of a less smooth regression surface at the location of the qth basis function in

the training space. In Figure 2.5, for example, when the input is located within the area

that is covered by the third basis function (ℎ3), 𝑦𝑦𝑛𝑛 has a larger value compared to the

175

other areas. The curve that represents 𝑦𝑦𝑛𝑛 is less smooth in that portion because of the

relatively large value of the weight that corresponds to ℎ3. The output weights with

relatively large values are generally used to represent relatively less smooth parts in the

hyper-surface that simulates the problem (i.e., the more complex portions of the training

space). In other words, the more complex problems require more complex models, which

are mainly characterized by having less smooth regression curves. On the other hand,

having extremely large values for some weights relative to the rest of them is an

indication of potential over-fitting issues in the ANN model.

In summary, each element (𝑤𝑤𝑛𝑛𝑛𝑛) in the output weight vector (𝒘𝒘𝑛𝑛) can represent

the relative significance of its associated basis function. Having a relatively large 𝑤𝑤𝑛𝑛𝑛𝑛

value indicates the existence of a less smooth regression surface at the location of the qth

basis function. Thus, removing that basis function from the network model produces the

most test error, because this function has the most effect on the network design

complexity. Although the remaining basis functions are significant for the network, the

removal of one of them can be relatively compensated for by other functions since the

design complexity does not change drastically. On the other hand, the existence of

relatively extreme large 𝑤𝑤𝑛𝑛𝑛𝑛 value can indicate potential poor network performance due

to an over-fitting issue.

6.2.2. Task inputs

This section provides method for determining which inputs most substantially

effect simulation output. The significance of a particular input is measured by calculating

its change in value (its range) among the vectors of 𝑼𝑼, which represents sets of inputs for

176

the significant training cases for the training error (based on the OLS method). The inputs

with the most change in value are specified as the ones that cause the most change in the

outputs. Using Equation 6.5, the variation of 𝑦𝑦𝑛𝑛 with respect to the ith input 𝑥𝑥𝑖𝑖 can be

written as follows:

 𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕𝑥𝑥𝑖𝑖

= � exp�
−�𝒙𝒙 − 𝒖𝒖𝑞𝑞�

2

2𝜎𝜎𝑞𝑞2
��

−2𝑥𝑥𝑖𝑖
2𝜎𝜎𝑞𝑞2

�𝑤𝑤𝑛𝑛𝑛𝑛

𝑄𝑄

𝑞𝑞=1

 (6.10)

Then, a change in 𝑦𝑦𝑛𝑛 due to a small change 𝛿𝛿𝑥𝑥𝑖𝑖in the ith input is given as

𝛿𝛿𝑦𝑦𝑛𝑛 =

𝜕𝜕𝑦𝑦𝑛𝑛
𝜕𝜕𝑥𝑥𝑖𝑖

𝛿𝛿𝑥𝑥𝑖𝑖 = �� exp�
−�𝒙𝒙 − 𝒖𝒖𝑞𝑞�

2

2𝜎𝜎𝑞𝑞2
��

−2𝑥𝑥𝑖𝑖
2𝜎𝜎𝑞𝑞2

�𝑤𝑤𝑛𝑛𝑛𝑛

𝑄𝑄

𝑞𝑞=1

� 𝛿𝛿𝑥𝑥𝑖𝑖
(6.11)

In Equation 6.11, the effect of 𝛿𝛿𝑥𝑥𝑖𝑖 on 𝛿𝛿𝑦𝑦𝑛𝑛 can be computed by summing all the

changes that are produced from various training cases. For all I inputs, �𝒙𝒙 − 𝒖𝒖𝑞𝑞�, 𝜎𝜎𝑞𝑞, and

𝑤𝑤𝑛𝑛𝑛𝑛 are all the same. Thus, the change in 𝑥𝑥𝑖𝑖 value is the only component that causes the

change in 𝑦𝑦𝑛𝑛 when calculating the sum changes among the training cases. Therefore, the

change in 𝑥𝑥𝑖𝑖 value can be directly used to indicate the input that causes the most change

in 𝑦𝑦𝑛𝑛.

Among all I problem’s inputs, this work determines the three inputs that cause the

biggest change in the output. These three dominant inputs are the ones with the most

change in their values over the significant training cases for the training error (i.e.,

over 𝑼𝑼 vectors). This work refers to the changes in an input value as the range of the

input. Equation 6.12 shows the calculated range for the ith input (𝑥𝑥𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), which is

measured by calculating the absolute difference between its minimum value (𝑥𝑥𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚),

Equation 6.13, and maximum value (𝑥𝑥𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚), Equation 6.14, within all Q training cases

that correspond to the basis functions.

177

 𝑥𝑥𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �𝑥𝑥𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚� , [𝑖𝑖 = 1, 2, . . , 𝐼𝐼] (6.12)

 𝑥𝑥𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑄𝑄) (6.13)

 𝑥𝑥𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑄𝑄) (6.14)

The maximum possible value of 𝑥𝑥𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is 2, since all inputs are normalized using

standardization (Section 3.2.1). Thus, there are no inputs with a much larger range of

values than the others. Within all I task inputs, inputs with the most change in value are

those with the three largest 𝑥𝑥𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑔𝑔 among the vectors of 𝑼𝑼. Consequently, the three

inputs with the most change in value are referred to as the most critical inputs in terms of

having the greatest effect on the simulation outputs.

6.2.3. Task outputs

In a simulated task with multiple outputs like the PD problem, the task’s outputs

(𝒚𝒚) with the most change in value over various conditions (training cases) can be

determined as the most critical outputs. The outputs with the greatest change in their

values through various training cases are those that show the most response in the

simulated problem for the change in various inputs. Hence, these critical outputs are the

determinants of the problem, since they are the outputs most affected by the change in the

task inputs.

The change in an output (∆𝑦𝑦𝑛𝑛) value is determined by calculating the average

difference between the output (𝑦𝑦𝑛𝑛𝑛𝑛) value and its mean (𝑦𝑦�) among the Q training cases

that correspond to the network’s basis functions as follows:

178

∆𝑦𝑦𝑛𝑛 =

1
𝑄𝑄
�|𝑦𝑦𝑛𝑛𝑛𝑛 − 𝑦𝑦�𝑛𝑛|
𝑄𝑄

𝑖𝑖=1

 , [𝑛𝑛 = 1, 2, . . ,𝑁𝑁] (6.15)

The outputs with the largest ∆𝑦𝑦𝑛𝑛 are the most critical ones for the simulated task.

Based on the aforementioned discussion, although calculating the output change ∆𝑦𝑦𝑛𝑛

among all available training cases should be is the typical option, using only the OLS-

based Q training cases to calculate ∆𝑦𝑦𝑛𝑛 saves effort, especially when there are many

training cases. The use of the Q training cases to calculate ∆𝑦𝑦𝑛𝑛 also helps the precise

extraction of the most challenging outputs for the network when being trained on a task.

Since the OLS method selects the training cases that provide the maximum reduction in

the network output training error, the selected training cases provide a direct indication of

the output training values that are responsible for the most errors in the network-predicted

outputs. Thus, the use of the most important training cases is sufficient to indicate the

most critical outputs.

In the PD problem, each group of outputs (R) represents the control points that are

used to create the motion profile for one DOF (see Figure 4.1). The size of R varies from

one task to another. Presenting the DOF (group of outputs) with the most aggregate

change in value provides more relevant conclusions regarding the task joint behaviors

than depending on the change in a single control point (one output). In contrast to the

evaluation of single control point, which does not provide any information about the

actual joint behavior, evaluating the DOF (where each joint consists of 1 to 3 DOFs

depending on the joint location in the used human model) can indicate partial behavior

of an actual joint. Therefore, evaluating the change in a DOF can provide direct insight

on the change that occurs in the whole joint. Determining the changes in the value of a

179

DOF involves evaluating the changes in the control points (outputs) that are used to

create the motion profile of that DOF. In Equation 6.16, the change in the value for a

DOF (∆DOFd) is calculated as the average of the change in the R outputs that represent

its control points.

∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 =

1
𝑅𝑅
�∆𝑦𝑦𝑟𝑟

𝑅𝑅

𝑟𝑟=1

 , [𝑑𝑑 = 1, 2, . . , 55] (6.16)

By presenting the most-changing DOFs, which are those with the largest ∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑,

the task behavior can be better understood. The most-changing DOFs reflect the parts of

the body/skeleton that are most likely to be the task determinants. The benefits to the

validation effort can be enhanced by knowing the most-changing task joints.

6.3. Results

The usefulness of the network parameters for a simulated task is evaluated in this

section, with the focus on the PD problem as an example. Specifically, the biomechanical

analyses of both PD tasks, walking and going-prone, are indicated. The most critical

training cases are determined for each task, as well as the most changed features (inputs

and outputs). Then, the extracted insights about the task characteristics from the network

components are evaluated and compared to the literature-based determinants

(characteristics), whenever available.

180

6.3.1. Example 1: walking task

Basis functions

As detailed in Chapter 4, the walking task has 42 inputs and 495 outputs, and 399

training cases are used to train the network. The trained network has 74 basis functions

that are selected by the OLS method and are created based on the importance of their

corresponding training cases in reducing the outputs’ prediction training error. For the

walking task, the list of significant training cases that correspond to the basis functions

along with the function spread (𝝈𝝈) values are reported in Table B.1 (Appendix B). With

respect to the task training cases, the most significant ones are specified using the basis

functions. The most significant basis function is specified as that correspond to the largest

𝑤𝑤𝑛𝑛𝑛𝑛 value. This is can be validated by evaluating the effect of removing each basis

function on the resulting testing root-mean square error (RMSE) for the network-

predicted error. Then, the basis functions that their removal produces the maximum

increase on the test error are specified as the most important ones, since their removal

produces the worst network performance. Consequently, the corresponding training cases

that are used to create these significant basis functions are specified as the most critical

cases. For the walking task, which has RMSE equal to 0.03, Table 6.1 illustrates the three

most critical basis functions. The produced RMSE when each one of these basis functions

is removed is also provided in the table, as well as the corresponding training cases.

181

Table 6.1: The three most critical basis functions for the network prediction error in
the walking task, and description of the corresponding training cases.

Largest
RMSE

Basis function
number

Corresponding training case (number)

0.59 5 No load, small ROMs, minimum speed (78)
0.56 54 Middle load, small ROMs, maximum speed (143)
0.52 65 Middle load, large ROMs, maximum speed (133)

Based on the reported results in Table 6.1, the most critical training case is case

number 78. It is important to note that the inputs in this case have extremely small values

in the training space in terms of the loading (i.e., no load), including joint range of

motions (ROMs), and walking speed (see Chapter 4 for the details of the included

inputs). The second case is number 143, which represents small values in terms of the

ROMs, middle values for the loading, and maximum values for the walking speed. The

third case, number 133, represents middle load values, large ROMs, and maximum

walking speed. In general, the reported three critical training cases represent

combinations of the task inputs that are located at different locations within the training

space.

The critical cases for a task can be used as typical training cases in the real-life

training protocols. Further, the cases can be used to improve the effort of biomechanical

validation of a PD task or ANN-based simulation to assure the task is being built

properly. When a new PD task is developed, its prediction success is validated by

comparing the task results of some conditions with those produced by a real human

being. The human performs the task under the same conditions provided to the PD and is

recorded by motion capture systems. Instead of the random selection of these evaluated

cases, the significant training cases provide a new reliable platform for the cases that

need to be used in the validation process.

182

With respect to the output weights (𝑤𝑤𝑛𝑛𝑛𝑛), the three that have the largest absolute

values are reported to compare against the drawn significant basis functions. In each 𝑤𝑤𝑛𝑛𝑛𝑛,

the nth component represents the output number, while the qth component represents the

basis function number. The three largest absolute values are found to correspond

to 𝑤𝑤481,5 (the value equal 4.91), 𝑤𝑤68,5 (the value equal 4.49), and 𝑤𝑤71,5 (the value equal

3.27). When compared to the basis functions that are reported as the most significant

ones, Table 6.1, all three 𝑤𝑤𝑛𝑛𝑛𝑛 correspond to the 5th basis function. That function is

reported as the most significant function for the network. Thus, the conclusion regarding

the potential use of the 𝑤𝑤𝑛𝑛𝑛𝑛 to represent the significance of its associated basis function is

satisfied in the walking task. If this conclusion is proved further on other PD tasks, the

effort of removing each basis function to evaluate its significance for the network design

can be saved by reporting the 𝑤𝑤𝑛𝑛𝑛𝑛 with the maximum absolute values.

With respect to the functions with the largest spread (𝜎𝜎) values, there are six basis

functions that have the same 𝜎𝜎 value, which equal to 3.8. These functions are number 13,

33, 52, 57, 68, and 71. As reported in Table 6.1, none of these basis functions is

considered one of the most significant functions for the network performance. Therefore,

the 𝜎𝜎 value is not useful in indicating the importance of the associated basis function to

the network design.

Inputs

Among all 42 inputs, which include the body link masses and their three-

dimensional centers of mass to represent the various loading conditions on the back,

head, and hand, the reduced ROM for some body DOFs, and the speed, this work

specifies the three most critical inputs. Table 6.2 summarizes these three dominant inputs,

183

which are the three inputs with the largest 𝑥𝑥𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟values (Equation 6.12). The input with

the most change in value corresponds to the body segment (i.e., link) that represents the

upper part of the neck’s center of mass in the y-dimension. Basically, the value of the

neck’s center of mass in the y-dimension is changed when different equipment is added to

the avatar’s head, such as a helmet, night vision glasses, etc. The input with the second

most change in value is the link that represents the lower neck’s center of mass in the x-

dimension. This input is changed when different loadings are carried on the back, such as

a backpack, armor, radio, etc. The third input presented in Table 6.2 is the mass of the

link that represents the lower part of the neck. In general, this input is directly related to

the second presented input; both are changed together.

Table 6.2: The three inputs with the most change in value in the walking
task.

Input ranking for
most change in

value

Input range
value (𝒙𝒙𝒊𝒊

𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓)
Input name

1 1.35 Upper neck- y center of mass
2 1.18 Lower neck- x center of mass
3 0.94 Lower neck mass

Ideally, the most obvious input to change in showing the effect (response) of a

changed condition in a PD task is when the loading is changed. In the Santos software,

various types of equipment and loadings are attached mainly to the links that represent

the upper and lower neck. Thus, the results obtained in Table 6.2 for the most critical

inputs prove that notable behavior in the simulated motion task.

184

Outputs

With respect to the task outputs, the most changed ones are determined. Based on

the value ∆𝑦𝑦𝑛𝑛 calculated in Equation 6.15, the change in value output is evaluated for all

task outputs among the Q training cases that correspond to the network’s basis functions.

Then, the change in value of a DOF (∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑) is calculated (Equation 6.16), which

represents the average of the change in the control points associated with the DOF. Table

6.3 presents the three DOFs with the most change in value among the simulated 55-DOF

human model. The detailed ∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 values for all 55 DOFs are presented in Table B.3

(Appendix B). Eventually, the reported DOFs with the maximum change in value can

refer to the biomechanical determinant joints for the simulated task.

Table 6.3: The three degrees of freedom (DOFs) with the most change in value in
the walking task.

DOF ranking for
most change in

value

DOF change in
value (∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑)

DOF name (number)

1 0.06 Spin_Low Extension/Flexion (Q2)
2 0.054 Right_Knee Extension/Flexion (Q39)
3 0.043 Spin_MidLow Extension/Flexion (Q5)

In Table 6.3, the indicated maximum change of value is experienced in the one

called “Spine Low-Extension/Flexion” (known as Q2 in Santos). The second maximum

change presented in “Right_knee Extension/Flexion” (Q39) is followed by the one that

represents the “Spine Mid-Low-Extension/Flexion” (Q5). These presented results for the

DOFs with the most change in value in the walking task strongly match those indicated in

the literature for the determinant joints. Depending on the location, each joint represents

either one, two, or three DOFs. The knee joint is widely known as one of the

185

determinants in the walking task [1, 2]. When there is a load applied on the back, the

spine joint is indicated as a determinant joint [3].

The three DOFs with the minimum ∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 values are presented in Table 6.4. The

minimum value, which is zero, is reported for the “Right_Shoulder Rotation

Internal/External” (Q17). This DOF experiences absolutely no change over the various

task conditions because the right hand is constrained to always attach the weapon and

carry it to the front side of the body. Thus, shoulder rotation in the internal/external

direction is not allowed in the walking task. Thus, fixing this DOF for the task will not

affect the resulting motion. The DOF with the second least change in value is reported for

the “Lower_Neck Right/Left Rotation” (Q33), which has a very small value (0.002). It is

obvious that this DOF is not allowed to be changed freely because none of the

configurations can cause neck rotation in the walking-forward task. The third reported

DOF in Table 6.4 is for the “Left_Elbow Flexion/Extension” (Q27). The left elbow is

constrained to be attached to the front side of the weapon in this task. Consequently, the

presented three DOFs in Table 6.4 can be eliminated or fixed in this task without

affecting the whole resulting motion under various loading and configuration conditions.

Table 6.4: The three degrees of freedom (DOFs) with the least change in value in
the walking task.

DOF ranking for
least change in

value

DOF change in
value (∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑)

DOF name (number)

1 0 Right_Shoulder Rotation
Internal/External (Q17)

2 0.002 Lower_Neck Right/Left Rotation (Q33)
3 0.014 Left_Elbow Flexion/Extension (Q27)

186

In general, the three DOFs with the maximum change in value that are reported in

this task are helpful indications for the task determinant joints, which involve the knee

and spine along with other joints. Further, the DOFs with minimum change in value in

this task are those that belong to joints that are either constrained in the task by being

attached to the weapon or those on which the simulated motion has minimal effect. These

DOFs can be fixed or eliminated from the walking task without affecting the simulation

results. Thus, the PD algorithms for this task, and the corresponding ANN model, can be

modified to have fewer design variables and faster optimization runs.

With respect to the output weights (𝑤𝑤𝑛𝑛𝑛𝑛), the three that have the largest absolute

values are reported to compare against the drawn critical DOFs. The three largest

absolute values are found to correspond to 𝑤𝑤481,5 (DOF# Q48), 𝑤𝑤68,5 (DOF# Q1), and

𝑤𝑤71,5 (DOF# Q1). When compared to the DOFs that are reported as the most critical

ones, Table 6.3, none of the three reported 𝑤𝑤𝑛𝑛𝑛𝑛 corresponds to any of the outputs that

represent the critical DOFs.

6.3.2. Example 2: going-prone task

Basis functions

In the going-prone task, which is detailed in Chapter 4, there are 41 inputs and

550 outputs, and 306 training cases are used to train the network. The trained network has

38 basis functions. For the going-prone task, the list of significant training cases that

correspond to the basis functions along with the function spread (𝝈𝝈) values are reported

in Table B.2 (Appendix B). The most significant task training cases are specified using

the basis functions. The basis functions that produce the maximum RMSE for the

187

network-predicted error when they are removed are presented in Table 6.5. The

corresponding training cases for these functions are also described in the same table.

When all basis functions are included, the produced RMSE equals 0.019.

Table 6.5: The three most critical basis functions for the network prediction
error in the going-prone task, and description of the corresponding training
cases.

Largest
RMSE

Basis function
number

Corresponding training case
(number)

0.89 6 Minimum load, maximum ROMs (263)
0.57 14 Middle load, minimum ROMs (41)
0.48 13 Small load, middle ROMs (162)

In Table 6.5, based on the aforementioned classification, training case number

263 is selected as the most critical one. This case has minimum values in terms of the

loading and maximum values in terms of the included ROMs. The second case is number

41, which represents middle values in terms of loading and minimum values in terms of

the ROMs. The third case, number 162, represents small values in terms of loading and

middle values in terms of the ROMs. The reported three critical training cases, again,

represent combinations of the task inputs that are located at different parts of the training

space.

With respect to the output weights (𝑤𝑤𝑛𝑛𝑛𝑛), the three that have the largest absolute

values are reported to compare against the drawn significant basis functions. The three

largest absolute values of 𝑤𝑤𝑛𝑛𝑛𝑛 are found to correspond to 𝑤𝑤163,6 (the value equal 5.81),

𝑤𝑤74,6 (the value equal 5.41), and 𝑤𝑤53,6 (the value equal 4.62). Similar to the trend shown

in the walking task, all three 𝑤𝑤𝑛𝑛𝑛𝑛 correspond to the same 6th basis function, which is

reported as the most significant function for the network (Table 6.5). Based on the results

188

shown in both analyzed PD tasks, walking and going-prone, it is proven that the absolute

value of 𝑤𝑤𝑛𝑛𝑛𝑛 can to be used in provide definite determination of the most significant basis

function for the network prediction capability. Specifically, 𝑤𝑤𝑛𝑛𝑛𝑛 can indicates the basis

function that produces the maximum reduction in the network testing error.

With respect to the basis function spread (𝜎𝜎) value, the three basis functions that

have the largest 𝜎𝜎 values are reported. The three largest 𝜎𝜎 values are found to correspond

the basis functions number 16 (𝜎𝜎=7.66), 11 (𝜎𝜎=7.2), and 13 (𝜎𝜎=5.57). In Table 6.5, only

the basis function number 13 is reported among the most significant functions for the

network performance. Along with the results reported in the walking task, this result

conforms the insignificance of the 𝜎𝜎 value in reflecting the importance of the associated

basis function to the network design.

Inputs

With respect to the inputs with the most change in value for the going-prone task,

the three most dominant ones among the 41 inputs are illustrated in Table 6.6. These

results are presented based on the calculated 𝑥𝑥𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 in Equation 6.12. This task involves

the same type of inputs as in the walking task, except for the walking speed. The input

with the most change in value corresponds to the lower part of the neck’s center of mass

in the x-dimension. The second one belongs to the lower part of the neck’s center of mass

in the y-dimension. The first two most critical inputs are changed together when the back

loading is changed. The third critical input is the center of mass (y-dimension) of the link

that represents the upper part of the neck. As in the walking task, the going-prone task’s

most critical inputs correspond to those generally affected by changing the loading

conditions.

189

Table 6.6: The three inputs with the most change in value in the going-
prone task.

Input ranking for
most change in

value

Input range
value (𝒙𝒙𝒊𝒊

𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓)
Input name

1 1.98 Lower neck- x center of mass
2 1.5 Lower neck- y center of mass
3 1.35 Upper neck- y center of mass

As with the results obtained in the walking task, the inputs with the most change

in value in the going-prone task indicate that the most critical inputs to change to show

the effect (response) of a changed condition in a PD task are the loading inputs. The

simulated motions in this task are affected the most by changing the inputs reported in

Table 6.6, which correspond to the change in loading applied on the back.

Outputs

Table 6.7 illustrates the results of the three DOFs with the most change in value in

the simulated 55-DOF human model in the going-prone task. These results are presented

based on the calculated ∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 in Equation 6.16. The detailed ∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 values for all 55

DOFs are presented in Table B.4 (Appendix B). In Table 6.7, the DOF with the

maximum change of value is the one for “Left_Clavicle elevation (shrug)” (Q22). If the

task-simulated motion in Chapter 4 is recalled, the left hand is responsible for touching

the ground and holding the body before the body ends up prone on the ground. As the

main joint that holds the body mass in this case, the clavicle handles most of the body

mass when the hand touches the ground. That joint is the most affected one, especially

under various loading conditions. The DOF with the second maximum change is the

“Left_Ankle Dorsi plantar/Flexion” (Q47). The Q47 DOF, which represents part of the

ankle joint, is strongly affected by the loading conditions because all body segment

190

masses are combined in single force at the ankle. The third one represents the

“Global_Rotation Right/Left” (GR3). The global rotation is included in this task since the

task requires the rotation of the whole body to be changed from the standing posture to

prone on the ground.

Table 6.7: The three degrees of freedom (DOFs) with the most change in value in
the going-prone task.

DOF ranking for
most change in

value

DOF change in
value (∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑)

DOF name (number)

1 0.044 Left_Clavicle elevation (shrug) (Q22)
2 0.038 Left_Ankle Dorsi plantar/Flexion (Q47)
3 0.037 Global_Rotation Right/Left (GR3)

In Table 6.7, all three reported DOFs present parts of the joints that are most

likely to be the most affected ones (i.e., the task key joints) by the task various

conditions. Although there has been no literature yet that objectively evaluates the task

joint determinants, the presented DOFs with the most change in value in this work mimic

the general behavior of the task. The global rotation, for instance, is the main notable

characteristic in this task. That in turn supports the results obtained in this work.

The three DOFs with the minimum ∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 values are not reported for the going-

prone task. Unlike the results in the walking task, the going-prone task involves 17 DOFs

with absolutely no change in ∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 over the various task conditions. These DOFs

include: Q1, Q3, Q4, Q6, Q7, Q9, Q10, Q12, Q33, Q34, Q35, Q36, Q38, Q41, Q43, Q45,

and Q48. Such results indicate that the task is very constrained relative to the walking

task. Thus, fixing or eliminating these DOFs for the task will not have any effect on the

resulting motion. The reported results for the going-prone task show that the

191

aforementioned idea of reducing the number of design variables in the PD task can be

extremely efficient for very constrained tasks like going-prone. Since many unchanged

DOFs are included in the optimization problem when simulating the new going-prone

motion, the optimization will be faster when fewer design variables need to be found (i.e.,

when the unchanged DOFs are removed from the problem).

With respect to the output weights (𝑤𝑤𝑛𝑛𝑛𝑛), the three that have the largest absolute

values are reported to compare against the drawn critical DOFs. The three largest

absolute values of 𝑤𝑤𝑛𝑛𝑛𝑛 are found to correspond to 𝑤𝑤163,6 (DOF# Q11), 𝑤𝑤74,6 (DOF#

Q02), and 𝑤𝑤53,6 (DOF# GR3). When compared to the DOFs that are reported as the most

critical ones, Table 6.7, only the 𝑤𝑤𝑛𝑛𝑞𝑞 corresponds to the GR3 is reported. In summary, the

results shown in both analyzed PD tasks, walking and going-prone, prove that the value

of 𝑤𝑤𝑛𝑛𝑛𝑛 cannot be used to extract practical indications regarding the task critical outputs.

6.4. Discussion

This chapter presents a novel application for the new RBN design as a tool for

simulated task analysis. The values of the network parameters, which include the basis

functions, their parameters (the centers (𝑼𝑼) and spreads (𝝈𝝈)), and output weights (𝑾𝑾), are

shown to be useful in providing feedback about the tasks. In addition, useful suggestions

are extracted for the PD task development and validation processes, as well as

recommendations for practical training protocols for the simulated tasks. In general, the

new methods introduced in this chapter show that the parameters of a trained ANN can

be used to study human performance and extract unique characteristics of a simulation

task that are not provided by any other prediction tools. For each presented PD task, the

192

critical training cases, inputs, and outputs are specified. Hence, the dominant

characteristics of a task can be determined.

The chapter presents a unique opportunity to develop a new tool for

biomechanical analyses of the simulated PD tasks using the ANN’s parameters. It is

found that output weights (𝑾𝑾) can be used to determine the most critical basis functions

that cause the greatest reduction in the network test error. Then, the critical basis

functions can specify the most significant training cases that are responsible for the

proper performance achieved by the network. The inputs with the most change in value

can be extracted from 𝑼𝑼 in order to determine the dominant inputs. The outputs with the

most change in value and their corresponding key body degrees of freedom (DOFs) for a

motion task can also be specified using the training cases that are used to create the

network’s basis functions.

Determining the most significant training cases for a task would help provide

suggestions for the cases to be used for the task validation. These significant cases can be

considered the typical cases for the task when it is being evaluated. In addition, the task

development and optimization running time might be improved, because the significant

training cases can replace the randomly selected seed motions in the optimization cost

function (see Chapter 4 for details on the PD optimization problem). Along with the

potential benefits that are gained by studying the task’s significant training cases, the

cases help investigate the most critical task input(s), as well as indicate the potentially

most important outputs. That is especially needed for problems like PD tasks because

they involve prediction of a relatively large number of outputs (in the order of hundreds).

193

Among all PD inputs, which include 41 and 42 inputs for the walking and going-

prone tasks, respectively, the body link masses and their three-dimensional centers of

mass to represent the various loading conditions on the back, head, and hand, the reduced

ROM for some body DOFs, and the speed in the walking task, this work finds that the PD

tasks’ most critical inputs are those representing the back and head loadings. Although

having various combinations of other inputs is critical for successful task simulation, the

focus should be mainly on having more varied combinations of the most critical inputs.

Specifically, most training cases need to involve various equipment sizes and masses, and

with symmetric and asymmetric distribution to change the centers of mass of different

body links. In contrast to changing all task inputs in the same manner, the less-critical

inputs can be kept fixed or minimally changed, and the dominant inputs are changed

when creating new conditions to be added to the task training library. With these

considerations, a more organized approach might be developed for the best combination

of inputs when the training cases are collected for a new PD task. Consequently, fewer

training cases are used for the same or improved network design, and less time is

consumed in collecting the training cases. This trend of having fewer training cases with

more efficient combinations of inputs that produce similar ANN prediction results can

enhance those results produced in the example shown in Figure 4.9. In that example,

adding more training cases was not helpful in all cases because of the random collection

of the added cases.

The proposed approach of depending on the calculation of the change in value of

the output (∆𝑦𝑦𝑛𝑛) to extract the associated DOFs with the most change in values as an

indication of the critical key joints for the presented PD tasks is shown to be effective.

194

The results from both tasks were promising since the joints specified as the potential key

joints match both what is found in the literature and the task’s natural biomechanical

behavior. The main benefit of knowing these key joints for a task is that it provides the

biomechanics community with a tool to extract the determinant joints for a new motion

task. Instead of evaluating all body joints, the biomechanical analysis is only performed

on the determinant joints. That in turn saves time and effort.

In future work, the results regarding the task-related features can be investigated

further and validated. Other PD tasks might also be studied. Furthermore, the training

cases indicated as the significant ones might replace the original seed motion to evaluate

their effects on the optimization running times. The network performance could also be

evaluated after being retrained using new sets of training cases with a focus on collecting

the cases with more variations among the reported key inputs. Moreover, the new

network parameter analyses that are applied on the PD motion tasks might be populated

not just over other digital-human-modeling problems but for other applications as well.

Further, although the presented DOFs with the maximum and minimum changes in

values provides valuable biomechanical insight about the simulated tasks, these DOFs do

not completely reflect the joints with maximum and minimum changes. Depending on its

location in the body and the simulated human model, each joint consists of single or

multiple DOFs. Hence, a more general evaluation of the key joints can be performed in

future work by combining the changes in values of the DOFs that represent the same

body joint.

195

CHAPTER VII

DISCUSSION

The main focus of the thesis work is the development of new artificial neural network

(ANN) algorithms for real-time dynamic motion prediction of a digital human model

(DHM). Various challenges related to the motion problem specifications are overcome,

and new ANN approaches are proposed to overcome the existing network limitations.

This chapter provides a summary of the new approaches and contributions. General

discussion and conclusions are then provided for the new algorithm’s evaluation when

applied on experimental and practical problems. Finally, potential ideas and open issues

are illustrated for future research work.

7.1. Summary

Artificial neural networks have been used successfully in various practical

problems. Though extensive improvements on different types of ANNs have been made

to improve their performance, each ANN design still experiences its own limitations. In

general, typical ANN models experience limited performance when applied in

applications with large-scale size, limited available training data, or both.

The existing DHMs are mature enough to provide accurate and useful results for

different tasks and scenarios under various conditions. There is, however, a critical need

for these models to run in real time, especially those with large-scale problems like

motion prediction. Predicting motion problems can be computationally demanding. It

takes time (minutes to hours) to predict a single task, even with small changes in the task

196

conditions. Hence, this work addresses that need using a new radial-basis network (RBN)

design that is capable not only of providing highly accurate real-time motion results, but

of providing them with minimal training.

The RBN is a powerful type of ANN to be investigated for predicting highly

complicated problems like DHM motion. The RBN has been selected in this work

because of its advantages when predicting regression problems and its fast and successful

training process, especially in large-scale applications. The RBN design, however, has

some limitations. Therefore, this work presents a new algorithm for the development of a

new RBN design to address the needs. Specifically, this means creating a single network

design that provides improved prediction of large-scale motion problems, even with a

reduced number of training cases. The design incorporates multiple training stages with

approaches to facilitate automation of the whole training process with minimal heuristics.

Methods for constraint implementation within the new design are also provided. In

addition, the design is used as a new tool for simulated task analysis.

In the current ANNs, there are gaps in the state of the art with respect to

prediction models for large-scale problems. In this context, the term “large-scale” refers

to the ratio between the number of outputs and the number of inputs and/or training cases.

Specifically in DHM motion prediction problems, the large-scale problem could be

referred to as the number of outputs. There is a critical need, especially in the field of

DHM, to develop a single model that is capable of providing instant realistic motion

prediction of full-body DHM.

The RBN is the fundamental ANN model that is used in this work, and its various

training techniques are illustrated in Chapter 2. That chapter also details the current RBN

197

design deficiencies, which mainly include: 1) generally poor performance when

predicting large-scale problems like DHM motion, 2) limited prediction capability when

the network is trained with minimal available training cases, and 3) network parameters

setups that involve many heuristics, especially the basis function centers (U) and spreads

(𝝈𝝈).

All proposed opportunities for the aforementioned deficiencies are considered in

new methodologies presented in this work. The work develops a new RBN design that

outperforms other models, especially when used for large-scale problems with fewer

training cases. To that end, this work pursues the following objectives:

1. Design a new ANN to provide robust and improved performance with large-scale

problems with a reduced number of training cases.

2. Develop training approaches that facilitate automation of the training process with

involvement of minimal heuristics.

3. Use the new ANN design to provide accurate real-time prediction of motion tasks for

full DHM under various task conditions.

4. Develop new methods for constraint implementation within the ANN design to

improve the results and satisfy the critical constraints.

5. Use the ANN as a new tool to extract useful biomechanical information about the

predicted DHM tasks.

Based on the presented research objectives, this work develops new

methodologies for designing an RBN with an optimal training process to improve the

network performance (i.e., the most possible accuracy in the predicted network outputs)

for different applications. The improved performance is especially applicable for those

198

applications with reduced available training data like the motion prediction of DHM.

Based on the RBN training process, the new design involves multi-stage training

techniques for determining all necessary network parameters.

The new RBN design outperforms other typical ANN and regression models. The

new design in this work is conceptually similar to the knowledge-based neural network

(Towell & Shavlik, 1994), which is a hybrid learning method for an ANN, but the

algorithms and training procedures used in the designs are different (details provided in

Chapter 1). Furthermore, this work proposes and evaluates new approaches for constraint

implementation that are conceptually similar to those proposed in the literature but that

might not affect the results produced from the new RBN design. In addition, although the

evaluation is not successful in all predictive dynamic (PD) tasks, it is shown that the new

approaches can relatively maintain the speed of ANN calculations when applied on some

PD tasks. Unlike the existing methods, the new approaches can be applied for any task

and any type of constraint.

Other applications and analyses in the DHM predicted motion problems are

performed in this work by using the new RBN design to provide insights regarding the

inherent parameters in the predicted tasks. The design is used to draw biomechanics

feedback about the predicted task. Questions regarding the most critical training cases

and significant task inputs and outputs can be addressed. Moreover, this work focuses on

implementing the new RBN in the Santos software environment to be automatically

trained and run to provide real-time motion prediction, and to possibly be populated for

the prediction of other problems. Some work (Ishu, van Der Zant, Becanovic, & Ploger,

2004) pointed out the need for automatic methods to run the ANN quickly; this requires

199

careful selection and modification of the approach incorporated in the new RBN design.

Such requirements are considered in the algorithms used in the new design to facilitate

automation of the whole training process with minimal heuristics.

With the new developments detailed in the previous chapters, this thesis made the

following contributions:

1. Improved RBN performance when predicting a task with any number of training

cases.

2. Introduced a modified orthogonal least squares (OLS) algorithm for determining basis

function centers (U) and initial connection weights (W). Unlike the original OLS

method, the modified method has better termination criteria that assists in setting

more proper number of basis functions for improved network design. The initial W

values can speed up the coverage of the optimization problem when calculating the

optimal W.

3. Integrated the OLS approach and an optimization-based approach.

4. Introduced objective calculation of all necessary network parameters that are task

independent.

5. Proposed a modified design for the newly developed RBN design, called Opt_RBN,

for improved performance in large-scale problems with minimal training data.

6. Applied the new modified Opt_RBN design for real-time prediction of predictive

dynamic (PD) tasks for full DHM.

7. Illustrated two new approaches for constraint implementation to be incorporated

within the new RBN design.

8. Improved the accuracy of the new RBN-predicted outputs and visual motion.

200

9. Used the ANN and its associated parameters as a tool for simulated task analysis.

Analysis of the network parameters can lead to indication of the critical task inputs,

outputs, and training cases.

7.2. Conclusion

The main contribution introduced in this work is the development of a new RBN

design, called Opt_RBN, which is detailed in Chapter 3. The new RBN design overcomes

the poor performance of ANNs when used in applications that have limited numbers of

training cases available. The new design “Opt_RBN” was tested on four experimental

problems, and the results were compared with those from three models: linear regression,

feed-forward back-propagation network (FFN), and RBN. The results showed that

Opt_RBN outperforms the other models in all examples. In addition, the results of

comparing the new design with the RBN at different numbers of training cases suggested

better response for the Opt_RBN to produce the smallest possible error. Then, Opt-RBN

was evaluated and compared with RBN on two real-world regression problems. In

general, Opt_RBN evaluation showed substantial outperformance when trained with

fewer training cases. The network showed stable performance when trained with fewer

training cases for all presented problems.

The new double termination criteria in the OLS method and the quadratic cost

function used in the optimization step (see Chapter 3) guarantee that the Opt_RBN design

demonstrates high robustness and stability to provide improved performance. The robust

and stable behaviors of the new design are illustrated by its results in all presented

201

examples, as well as when the design is evaluated with multiple training and test samples

in the experimental problems.

The new design proposes a smarter ANN that is capable of improved learning

rather than needing more training data. The new design opens new fields for the use of

ANNs in applications with limited numbers of training data, such as digital human

modeling. The design is introduced with a focus on improving the prediction ability for a

unique problem, which is the regression problem with reduced available training sets.

The use of training algorithms with minimal heuristics takes the new RBN design to a

higher domain of prediction quality that none of the competing methods have achieved.

That prediction quality is facilitated by the use of OLS to set the inputs of the significant

training case, which are selected from all available training data, as 𝑼𝑼, and the

optimization to find the optimal 𝝈𝝈 and 𝒘𝒘 values.

The new Opt_RBN design has some limitations, which include: 1) the design

outperformance compared to other competing models could decline when more training

data are available because the design might experience over-fitting issue when being

trained using more training data, and 2) when the design is being simulated to predict

large-scale problem in terms of the number of outputs (more than 200 outputs), the

design experiences a CPU memory issue when running the optimization step in its

training process (Section 3.2.4).

Chapter 4 leveraged the work on development of the new RBN, Opt_RBN, for

PD applications. The original proposed Opt_RBN design is modified to work for large-

scale PD problems in terms of the number of outputs. Although the Opt_RBN design

improves the prediction results for application with a reduced number of training cases,

202

applying the new design on the large-scale PD application experiences some difficulty.

The Opt_RBN experiences a memory issue when running the optimization step in its

training process (Section 3.2.4) to predict all PD outputs from a single network model.

Nonetheless, the new RBN design and its training process proposed in Chapter 3 should

still be the typical choice when predicting any regression application with reduced

training sets. The modified steps should only be used for large-scale applications similar

to PD.

The modified Opt_RBN design was successfully implemented, and its

performance was investigated on mathematical simulations. Then, its capability to

provide real-time prediction of two common PD tasks, walking and going prone, was

evaluated. The evaluation results of the new network were acceptable objectively and

subjectively. Compared to typical RBN design, the Opt_RBN had relatively small

prediction errors for approximately 500-700 outputs from a single network model.

Although the presented modification to the Opt_RBN is driven by its use with PD, the

consequent ANN design can be used with a broad range of large-scale problems; PD is

simply a well-studied example problem for the proposed developments. The new

proposed ANN design can be used for general applications in various large-scale

engineering and industrial fields that experience delay issues when running

computational tools that require a massive number of procedures and a great deal of

memory.

Although the new network training process took longer than that in the typical

RBN design, both networks run in a fraction of a second for the test cases. Given the

improvements in the results and the problem sizes, the training times for the new network

203

are acceptable. Furthermore, the training time is not as important as the run time for test

cases for most practical applications.

To check the prediction sensitivity of the modified Opt_RBN at various numbers

of training cases, it was trained and evaluated with various numbers for a walking task,

and its results were compared with those obtained from the RBN. Besides the superiority

of Opt_RBN’s performance over RBN’s, the analysis introduced a tool that can be used

as guidance to balance collecting the proper number of training cases for the PD tasks

with the design of a network with acceptable results. If Opt_RBN is used to predict a new

PD task, the performed error analysis at various numbers of training cases could provide

an appropriate approximation of the number of training cases required to achieve the

necessary accuracy—specifically, the balance (i.e., trade-off) between the proper

prediction errors and number of necessary training cases. That in turn could be critical for

saving effort, since collecting each PD case is computationally costly. As an example

from the presented walking task, training the network with 399 cases instead of 918,

where both produce similar prediction errors, could save approximately 55% of the time

consumed in collecting the training cases.

The PD motion results produced by the new modified RBN in Chapter 4 were

highly accepted and accurate. However, such motion results can violate some constraints

within the simulated PD task. Therefore, Chapter 5 worked toward improving the

performance of the new network design by introducing new approaches to satisfy the

potentially violated constraints. Specifically, since most PD tasks include a relatively

large number of constraints (on the order of hundreds or thousands), the new approaches

focused on implementing the constraints that are difficult to satisfy even with the highly

204

accurate predictions from ANN designs. For example, when different weapons are used

for the same avatar and task, the hands’ locations might be off from where they should be

on the weapon. In some other tasks like jumping up on a box and climbing stairs, hands

and feet are expected to be at specific locations at specific times over the motion profile.

There were two main proposed approaches for the implementation of PD contact

constraints within the new RBN design. The first one was called the constrained network

design (CND) method and incorporates constraints within the network training process.

The second one was called the locally adaptive network outputs (LANO) and is applied

after the network provides its outputs. The details of both approaches were discussed, as

well as their advantages and limitations. The CND method was not evaluated for any PD

task, because the method requires all design variables in the large-scale PD task to be

found in a single optimization run. That cannot be done since the software experiences

memory issues during such a task. Therefore, the method was not evaluated on the PD

task, but is expected to help reduce the constraint violations, if any exist. The method

could also enhance the general network-prediction ability and improve the violation in

other excluded constraints like the joint angle and torque limits of various degrees-of-

freedom (DOFs).

The results of implementing the LANO method and applying it for the PD tasks

were evaluated. Along with satisfying the constraints, the network performance with the

method was improved over that without the method. The method’s success was

emphasized in terms of running times and prediction errors, especially for the jumping-

on-the-box task where the method satisfies the constraints within 2-3 seconds. On the

other hand, the LANO method experienced slow running time when it was applied for the

205

walking task, because the method’s running time differs from one PD task to another or

for various versions of the task. The task could have different versions because the task

developer keeps updating the task based on user feedback to improve the task and fix

some odd results. In order to solve the method’s running issue, two modified LANO

methods were proposed. The methods were shown to improve the accuracy level and

running time for the walking task.

The use of the new constraint implementation methods (CND and LANO) can be

expanded to be applied for all ANN designs, including those that do not accept the

implementation of constrained optimization methods. Many existing ANN designs

include unconstrained optimization algorithms and cannot be modified to include

constraints. Therefore, the constrained optimization can be changed to an unconstrained

one to apply the new presented methods in such designs. That was especially needed for

the CND method since it is applied within the network training process. To address that

need, a method to change the CND constrained optimization problem to an unconstrained

problem was illustrated.

In Chapter 6, the calculated known RBN parameters were used to analyze the

characteristics of the simulated PD tasks. A novel application for the new RBN design as

a tool for simulated task analysis was presented. The network parameters, which mainly

included basis functions, basis function centers (𝑼𝑼), and the output connection weights

(𝑾𝑾), were shown to be useful in providing feedback about the studied tasks. In addition,

useful suggestions were extracted for the task development and validation processes, as

well as recommendations for practical training protocols of the simulated PD tasks. On

the other hand, although the relative significance of the basis function spread (𝜎𝜎𝑞𝑞) for the

206

change in the output (𝑦𝑦𝑛𝑛) can be computed, the significance of 𝜎𝜎𝑞𝑞 does not provide

definite useful conclusions regarding the task components (critical inputs, outputs, or

basis functions).

The basis functions that cause the greatest reduction in the network test error,

which can be determined using 𝑾𝑾 , are used to specify the most significant training cases

for the proper network performance. Knowing the most significant training cases would

help provide robust suggestions on the cases to be used for the task validation and specify

the real-life cases to be produced in the motion capture laboratory. Moreover, by

providing feedback about a task’s general behavior, the significant cases can have a great

impact on improving the task implementation. Furthermore, knowing the significant

training cases provides recommendations for potential practical training protocols when

the task is performed by real warfighters. Specifically, the fighter is trained on these

significant training cases instead of many more random cases. Along with the potential

benefits that are gained by studying the task’s significant training cases, the cases help

investigate the most critical task input(s), as well as indicate the potentially most

important outputs. That is especially needed for problems like PD tasks because they

involve prediction of a relatively large number of outputs (in the order of hundreds).

The task inputs with the most change in value can be extracted from 𝑼𝑼 in order to

determine the dominant inputs. The simulated PD walking and go-prone tasks were

presented as examples; their results showed that the most significant inputs for the

network-predicted outputs were those representing the back and head loadings.

Therefore, the recommendation for those tasks was to focus on collecting the training

cases that involve various equipment sizes and masses, and on symmetric and

207

asymmetric distribution to change the centers of mass of different body links. With these

considerations, a more organized approach might be developed for the best combination

of inputs when the training cases are collected for a new PD task. With the focus on

having cases with more variations for the important inputs, the performance of the trained

network would be improved.

The last part of Chapter 6 focused on extracting the most critical outputs, which

are indicated as those with the most change in their values. For the presented PD tasks,

the average change in the values for each group of outputs that represent one DOF are

also calculated. Hence, the DOFs that are associated with the greatest average changes

are extracted in order to indicate the critical key joints for the PD tasks. The results from

both tasks were promising since the joints specified as the potential key joints match both

what is found in the literature and the task’s natural biomechanical behavior. The main

benefit of knowing these key joints for a task is that it provides the biomechanics

community with a tool to extract the determinant joints for a new motion task. Instead of

evaluating all body joints, the biomechanical analysis is only performed on the

determinant joints. That in turn saves time and effort.

7.3. Future work

The successful use of the new RBN design for PD problems presented in this

thesis could be expanded to study more DHM-related tasks. For example, the presented

application of predicting the stresses on the knee joint (see Chapter 3) might be expanded

to other joints with consideration of extra inputs and outputs. The new RBN design can

208

also be applied for new challenging large-scale applications within and beyond the DHM

field.

With the completion of the new RBN design in this thesis, some pitfalls might

arise for the use of the design for problems beyond PD. Although the design performance

was validated on both experimental and practical problems, it is common for predictive

models like ANN to experience difficulties in producing comparable high-quality results

when applied on other practical applications. That is necessary indeed because each

problem has its own characteristics. For instance, a problem might be smaller and less

complicated than the PD, but its available training data may be more distorted and noisy.

Investigating methods to clean the training data in such a case is more critical than which

ANN model is used. Specifically, future work would include the following:

1. Improving the proposed network training process to be completely heuristics-free. In

the new network design, the new termination criterion, which is the main sensitivity

parameter in the network, still involves heuristics by setting the tolerance values.

Other statistical criterions like computing the variance of the residuals among the

training data could be incorporated and analyzed (Chen, Hong, Harris, & Sharkey,

2004; Kerschen, Worden, Vakakis, & Golinval, 2006; Walter & Pronzato, 1997).

2. Investigating the use of the new modified Opt_RBN design to involve the prediction

of other PD outputs like ground reaction forces on the feet, joint torque, etc.

3. Evaluating the new RBN design capability when predicting other PD problems with

various numbers of training cases. Then, general selection criteria can be drawn for

the optimal number of training cases to be used to train the ANN in new PD tasks. In

addition, the optimal number of training cases can be specified for the inputs-to-

209

outputs ratio. The same protocol might be followed for the use of ANN in other DHM

applications.

4. Evaluating the proposed modified Opt_RBN design for other large-scale practical

problems that experience delay issues when running tools that are computationally

expensive in terms of time and CPU memory.

5. Improving the modified Opt_RBN design to achieve better prediction results for the

PD outputs that were predicted with the highest errors. As initial steps, these outputs

can be checked for whether they are the same outputs in different tasks and conditions

or are random.

6. Incorporating other PD constraints in the network and evaluating the results in terms

of the optimization running times and resultant motion quality. In addition, alternative

constraint implementation approaches might be investigated, such as considering the

cost function to be one of the constraints, which could reduce the optimization

running time. Instead of optimizing the difference between the network output and

the final motion to the lowest possible value, the difference is set to a small value that

can be obtained quickly.

7. Expanding the use of the LANO method for constraint implementation towards other

PD tasks. The method was shown to be effective in terms of the results and fast

running time. On the other hand, implementation of other constraints using this

method does not necessarily preserve its running speed. Constraints like joint torque

limits might require more time to be satisfied.

In Chapter 6, the new novel study of connecting the network parameters with their

implications on the task critical components could greatly enhance future work for both

210

the ANN and DHM communities. That is because the ANN is typically used to provide

predictions without analyzing its parameters and means to the simulated task. In addition,

the DHM field is still developing and requires more effort to understand the general

human behaviors for the effort of modeling new tasks and validating existing ones.

Based on the presented tool for the use of ANN in simulation analysis, the new

extracted results regarding the task-related features can be investigated further and

validated. Other PD tasks might also be studied. Furthermore, the training cases indicated

as the significant ones might replace the original seed motion to evaluate their effects on

the optimization running times. The network performance could also be evaluated after

being retrained using new sets of training cases with a focus on collecting the cases with

more variations among the reported key inputs. Moreover, the new network parameter

analyses that are applied on the PD motion tasks might be populated not just over other

DHM problems but for other practical applications as well.

As a long-term goal, based on the presented results for the evaluated PD tasks in

Chapter 4, which show that some task outputs have either minor changes or no changes

over various task conditions, the ANN might help in developing new tools in the future to

improve the PD task-development process. For example, when a PD task is being

developed, the task could have a reduced number of design variables (i.e., eliminate the

unchanged outputs) or fix the unchanged DOF. That in turn would save development

effort and task running time. The ANN can help in that effort by reducing the number of

design variables (i.e., control points) for a task after the network prediction capability is

evaluated to check for the control points with minor changes. Moreover, the potential

211

long-term work from this thesis is and its related issues are proposed in the following

points:

1. Investigating alternative optimization approaches to solve the problem of CPU

memory when optimizing the network parameters to simulate large-scale problems.

Unlike the PD problem, in which the parameters can be divided to be found in

multiple optimization runs, other problems might not allow for such division.

2. The use of ANN as a total replacement of the PD algorithm when predicting a PD

task with no violated constraints, and under any conditions and scenarios. The PD

algorithm is complex and not only predicts the joint control points, but also calculates

other outputs like joint torques, which are critical to be found. To solve such an issue,

multiple ANNs can be trained to provide various types of outputs. Once the PD

calculates the joint control points, it takes less time to calculate all other outputs. That

is always true because calculating the other outputs is dependent on the control

points. Hence, prediction of the other outputs should be less challenging.

3. Considering the time step, which represents the order of the control points (outputs)

in the predicted motion profile, as input to reduce the ratio between inputs and

outputs. For example, when the task involves 6 control points for each DOF, the

network is trained to run 6 times, where only the time step input is changed, to

provide the 55 by 6 outputs for the whole motion profile. This approach also produces

6 training cases from each existing training case, which might be helpful.

4. Expanding the use of ANNs to provide feedback about the simulated PD problems.

The ANN might be involved in the detection of failed cases. Since the PD problem is

too complicated and nonlinear, the optimization sometimes reaches locally optimal

212

solutions that satisfy all the constraints but might visually look strange. During the

task development process, the ANN can detect the failed case produced from the

optimization algorithm of the task if the case is within the training grid. In such cases,

the detected failed cases can be inspected to fix the task formulations.

213

BIBLIOGRAPHY

Abdel-Malek, K., Arora, J., Yang, J., Marler, T., Beck, S., Swan, C., . . . Rahmatalla, S.
(2006). Santos: A physics-based digital human simulation environment. Paper
presented at the Proceedings of the Human Factors and Ergonomics Society
Annual Meeting.

Arora, J. (2004). Introduction to Optimum Design: Academic Press.

Bartlett, P. L. (1998). The sample complexity of pattern classification with neural
networks: The size of the weights is more important than the size of the network.
Information Theory, IEEE Transactions on, 44(2), 525-536.

Bataineh, M. (2012). Artificial neural network for studying human performance. M.S.
thesis, University of Iowa, 2012.

Bataineh, M., & Marler, T. (2015). Neural network for regression problems with reduced
training tets. Neurocomputing, under submission.

Bataineh, M., Marler, T., & Abdel-Malek, K. (2012). Using artificial neural networks for
prediction of dynamic human motion. Paper presented at International Summit on
Human Simulation, Florida, USA.

Bataineh, M., Marler, T., & Abdel-Malek, K. (2013). Artificial neural network-based
prediction of human posture. Paper presented at Digital Human Modeling and
Applications in Health, Safety, Ergonomics, and Risk Management. Human Body
Modeling and Ergonomics (pp. 305): Springer.

Beale, M. H., Hagan, M. T., & Demuth, H. B. (2001). Neural network toolbox for use
with Matlab user’s guide version 4. The mathworks.

Bianchini, M., Frasconi, P., & Gori, M. (1995). Learning without local minima in radial
basis function networks. Neural Networks, IEEE Transactions on, 6(3), 749.

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern Recognition and Machine Learning
(Vol. 1): Springer New York.

Bishop, C. M., & Roach, C. M. (1992). Fast curve fitting using neural networks. Review
of Scientific Instruments, 63(10), 4450.

Björck, Å. (1967). Solving linear least squares problems by Gram-Schmidt
orthogonalization. BIT Numerical Mathematics, 7(1), 1.

Bouzerdoum, A., & Pattison, T. R. (1993). Neural network for quadratic optimization
with bound constraints. Neural Networks, IEEE Transactions on, 4(2), 293.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123.

214

Broomhead, D. S., & Lowe, D. (1988). Radial basis functions, multi-variable functional
interpolation and adaptive networks. (NO. RSRE-MEMO-4148). ROYAL
SIGNALS AND RADAR ESTABLISHMENT MALVERN (UNITED
KINGDOM).

Buhmann, M. D. (2003). Radial basis functions: theory and implementations (Vol. 12):
Cambridge University Press.

Cao, J., Lin, Z., Huang, G.-B., & Liu, N. (2012). Voting based extreme learning machine.
Information Sciences, 185(1), 66.

Chakraborty, K., Mehrotra, K., Mohan, C. K., & Ranka, S. (1992). Forecasting the
behavior of multivariate time series using neural networks. Neural Networks,
5(6), 961-970.

Chen, S., Billings, S. A., & Luo, W. (1989). Orthogonal least squares methods and their
application to non-linear system identification. International Journal of Control,
50(5), 1873.

Chen, S., Cowan, C. F. N., & Grant, P. M. (1991). Orthogonal least squares learning
algorithm for radial basis function networks. Neural Networks, IEEE
Transactions on, 2(2), 302.

Chen, S., Hong, X., Harris, C. J., & Sharkey, P. M. (2004). Sparse modeling using
orthogonal forward regression with PRESS statistic and regularization. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34(2), 898-
911.

Cherkauer, K. J. (1996). Human expert-level performance on a scientific image analysis
task by a system using combined artificial neural networks. Paper presented at the
Working notes of the AAAI workshop on integrating multiple learned models.

Cochocki, A., & Unbehauen, R. (1993). Neural networks for optimization and signal
processing: John Wiley & Sons, Inc.

Collobert, R., Bengio, S., & Bengio, Y. (2002). A parallel mixture of SVMs for very
large scale problems. Neural Computation, 14(5), 1105.

Deming, W. E. (1944). Statistical Adjustment of Data: New York.

Deng, W., Zheng, Q., & Chen, L. (2009). Regularized extreme learning machine. Paper
presented at the Computational Intelligence and Data Mining, 2009. CIDM'09.
IEEE Symposium on (pp. 389-395). IEEE.

Drucker, H., Schapire, R., & Simard, P. (1993). Boosting performance in neural
networks. International Journal of Pattern Recognition and Artificial Intelligence,
7(04), 705.

215

Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern Classification: John Wiley &
Sons.

Fausett, L. (1994). Fundamentals of neural networks: architectures, algorithms, and
applications: Prentice-Hall Inc.

Fiacco, A. V., & McCormick, G. P. (1990). Nonlinear programming: sequential
unconstrained minimization techniques (Vol. 4). Siam.

Fletcher, R. (2013). Practical Methods of Optimization: John Wiley & Sons.

Frank, R. J., Davey, N., & Hunt, S. P. (2001). Time series prediction and neural
networks. Journal of Intelligent and Robotic Systems, 31(1-3), 91.

Freund, Y., & Schapire, R. E. (1995). A desicion-theoretic generalization of on-line
learning and an application to boosting. Paper presented at the Computational
Learning Theory.

Friedman, J. H. (1997). On bias, variance, 0/1—loss, and the curse-of-dimensionality.
Data Mining and Knowledge Discovery, 1(1), 55.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance
dilemma. Neural Computation, 4(1), 1-58.

Gholizadeh, S., Salajegheh, E., & Torkzadeh, P. (2008). Structural optimization with
frequency constraints by genetic algorithm using wavelet radial basis function
neural network. Journal of Sound and Vibration, 312(1), 316-331.

Gill, P. E., Murray, W., & Saunders, M. A. (2002). SNOPT: An SQP algorithm for large-
scale constrained optimization. SIAM Journal on Optimization, 12(4), 979-1006.

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks
architectures. Neural Computation, 7(2), 219-269.

Golub, G. H., & Van Loan, C. F. (2012). Matrix Computations (Vol. 3): JHU Press.

Grant, M., Boyd, S., & Ye, Y. (2008). CVX: Matlab software for disciplined convex
programming: Available from www.stanford.edu/~boyd/cvx/.

Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design (Vol. 1):
Pws Boston.

Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design: Pws Pub.
Boston.

Han, J., Kamber, M., & Pei, J. (2006). Data Mining: Concepts and Techniques: Morgan
kaufmann.

216

Hansen, L. K., Liisberg, C., & Salamon, P. (1992). Ensemble methods for handwritten
digit recognition. Paper presented at the Neural Networks for Signal Processing
[1992] II., Proceedings of the 1992 IEEE-SP Workshop.

Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12, 993.

Hartman, E. J., Keeler, J. D., & Kowalski, J. M. (1990). Layered neural networks with
Gaussian hidden units as universal approximations. Neural Computation, 2(2),
210.

Haykin, S., & Network, N. (2004). A comprehensive foundation. Neural Networks,
2(2004).

Haykin, S. S., Haykin, S. S., Haykin, S. S., & Haykin, S. S. (2009). Neural Networks and
Learning Machines (Vol. 3): Prentice Hall New York.

He, P., & Jagannathan, S. (2007). Reinforcement learning neural-network-based
controller for nonlinear discrete-time systems with input constraints. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(2), 425.

Hecht-Nielsen, R. (1989). Theory of the backpropagation neural network. Paper
presented at the Neural Networks, 1989. IJCNN., International Joint Conference
on.

Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence, 40(1),
185-234.

Hock, W., & Schittkowski, K. (1983). A comparative performance evaluation of 27
nonlinear programming codes. Computing, 30(4), 335.

Hong, P., Wen, Z., & Huang, T. S. (2002). Real-time speech-driven face animation with
expressions using neural networks. Neural Networks, IEEE Transactions on,
13(4), 916.

Hornik, K. (1993). Some new results on neural network approximation. Neural Networks,
6(8), 1069.

Huang, G.-B. (2003). Learning capability and storage capacity of two-hidden-layer
feedforward networks. Neural Networks, IEEE Transactions on, 14(2), 274-281.

Huang, G.-B., & Chen, L. (2008). Enhanced random search based incremental extreme
learning machine. Neurocomputing, 71(16), 3460.

Huang, G.-B., & Siew, C.-K. (2004). Extreme learning machine: RBF network case.
Paper presented at the Control, Automation, Robotics and Vision Conference,
2004. ICARCV 2004 8th.

217

Huang, G.-B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: a survey.
International Journal of Machine Learning and Cybernetics, 2(2), 107.

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for
regression and multiclass classification. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 42(2), 513.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Paper presented at the Neural
Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: theory and
applications. Neurocomputing, 70(1), 489.

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy.
International Journal of Forecasting, 22(4), 679-688.

Inman, V. T., & Eberhart, H. D. (1953). The major determinants in normal and
pathological gait. The Journal of Bone & Joint Surgery, 35(3), 543-558.

Isaksson, M., Jalden, J., & Murphy, M. J. (2005). On using an adaptive neural network to
predict lung tumor motion during respiration for radiotherapy applications.
Medical Physics, 32(12), 3801.

Ishu, K., van Der Zant, T., Becanovic, V., & Ploger, P. (2004). Identification of motion
with echo state network. Paper presented at the Oceans'04. Mtts/Ieee Techno-
Ocean'04.

Jung, E. S., & Park, S. (1994). Prediction of human reach posture using a neural network
for ergonomic man models. Computers & Industrial Engineering, 27(1), 369-372.

Kennedy, M. P., & Chua, L. O. (1988). Neural networks for nonlinear programming.
Circuits and Systems, IEEE Transactions on, 35(5), 554-562.

Kerschen, G., Worden, K., Vakakis, A. F., & Golinval, J.-C. (2006). Past, present and
future of nonlinear system identification in structural dynamics. Mechanical
Systems and Signal Processing, 20(3), 505-592.

Kim, J. H., Xiang, Y., Bhatt, R., Yang, J., Chung, H.-J., Patrick, A., . . . Abdel-Malek, K.
(2008). Efficient ZMP formulation and effective whole-body motion generation
for a human-like mechanism. Paper presented at the ASME 2008 International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference.

Kim, J. H., Xiang, Y., Yang, J., Arora, J. S., & Abdel-Malek, K. (2010). Dynamic motion
planning of overarm throw for a biped human multibody system. Multibody
System Dynamics, 24(1), 1-24.

218

Kim, Y. H., & Lewis, F. L. (1999). Neural network output feedback control of robot
manipulators. Robotics and Automation, IEEE Transactions on, 15(2), 301.

Kleinbaum, D., Kupper, L., Nizam, A., & Rosenberg, E. (2013). Applied regression
analysis and other multivariable methods: Cengage Learning.

Kohavi, R., & Wolpert, D. H. (1996). Bias plus variance decomposition for zero-one loss
functions. Paper presented at the Icml (pp. 275-283).

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-
1480.

Kohonen, T. (2001). Self-Organizing Maps (Vol. 30): Springer.

Koike, Y., & Kawato, M. (1995). Estimation of dynamic joint torques and trajectory
formation from surface electromyography signals using a neural network model.
Biological Cybernetics, 73(4), 291.

Köthe, G., & Garling, D. J. H. (1969). Topological Vector Spaces (Vol. 462): Springer.

Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active
learning. Advances in Neural Information Processing Systems, 231.

Kun, A., & Miller Iii, W. T. (1996). Adaptive dynamic balance of a biped robot using
neural networks. Paper presented at the Robotics and Automation, 1996.
Proceedings., 1996 IEEE International Conference on (Vol. 1, pp. 240-245).
IEEE.

Kwon, H.-J., Xiang, Y., Bhatt, R., Rahmatalla, S., Arora, J. S., & Abdel-Malek, K.
(2014). Backward walking simulation of humans using optimization. Structural
and Multidisciplinary Optimization, 1-11.

Lan, Y., Soh, Y. C., & Huang, G.-B. (2009). Ensemble of online sequential extreme
learning machine. Neurocomputing, 72(13), 3391.

Lapedes, A., & Farber, R. (1987). Nonlinear signal processing using neural networks.
Prediction and System Modelling (No. LA-UR-87-2662; CONF-8706130-4)..

Lázaro-Gredilla, M., & Figueiras-Vidal, A. R. (2010). Marginalized neural network
mixtures for large-scale regression. Neural Networks, IEEE Transactions on,
21(8), 1345-1351.

Lewis, F. L., Yesildirek, A., & Liu, K. (1996). Multilayer neural-net robot controller with
guaranteed tracking performance. Neural Networks, IEEE Transactions on, 7(2),
388.

219

Liang, N.-Y., Saratchandran, P., Huang, G.-B., & Sundararajan, N. (2006). Classification
of mental tasks from EEG signals using extreme learning machine. International
journal of neural systems, 16(01), 29.

Lloyd, S. (1982). Least squares quantization in PCM. Information Theory, IEEE
Transactions on, 28(2), 129.

Looney, C. G. (1997). Pattern Recognition Using Neural Networks: Theory and
Algorithms for Engineers and Scientists: Oxford University Press Inc.

Maa, C. Y., & Shanblatt, M. A. (1992). Linear and quadratic programming neural
network analysis. Neural Networks, IEEE Transactions on, 3(4), 580.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. Paper presented at the Proceedings of the fifth Berkeley Symposium
on Mathematical Statistics and Probability.

Mathia, K., & Clark, J. (2002). On neural network hardware and programming
paradigms. Paper presented at the Neural Networks, 2002. IJCNN'02.
Proceedings of the 2002 International Joint Conference on (Vol. 3, pp. 2692-
2697). IEEE.

Miller III, W. T., Glanz, F. H., & Kraft III, L. G. (1990). Cmas: An associative neural
network alternative to backpropagation. Proceedings of the IEEE, 78(10), 1561-
1567.

Miller, W. T., Werbos, P. J., & Sutton, R. S. (1995). Neural Networks for Control: MIT
press.

Moerland, P., & Fiesler, E. (1997). Neural network adaptations to hardware
implementations. Handbook of Neural Computation, 1, 2.

Moody, J., & Darken, C. (1988). Learning with localized receptive fields: Yale Univ.
Department of Computer Science.

Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing
units. Neural Computation, 1(2), 281.

Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function
networks. Neural Computation, 3(2), 246.

Patterson, D. W. (1998). Artificial Neural Networks: Theory and Applications: Prentice
Hall PTR.

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural networks.
Neural Computation, 1(2), 263-269.

220

Perrone, M. P., & Cooper, L. N. (1992). When networks disagree: Ensemble methods for
hybrid neural networks: DTIC Document.

Platt, J. (1991). A resource-allocating network for function interpolation. Neural
Computation, 3(2), 213.

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings
of the IEEE, 78(9), 1481.

Powell, M. J. D. (1983). Variable metric methods for constrained optimization
Mathematical Programming The State of the Art (pp. 288): Springer.

Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation: a review.
Paper presented at the Algorithms for Approximation.

Press, W. H. (2007). Numerical Recipes 3rd Edition: The Art of Scientific Computing:
Cambridge University Press.

Priddy, K. L., & Keller, P. E. (2005). Artificial Neural Networks: An Introduction (Vol.
68): SPIE Press.

Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse
approximate Gaussian process regression. The Journal of Machine Learning
Research, 6, 1939.

Rahmatalla, S., Xiang, Y., Smith, R., Meusch, J., & Bhatt, R. (2011). A validation
framework for predictive human models. International journal of human factors
modelling and simulation, 2(1), 67-84.

Reed, R. D., & Marks, R. J. (1998). Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks: Mit Press.

Ripley, B. D. (2007). Pattern Recognition and Neural Networks: Cambridge University
Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal
representations by error propagation. (No. ICS-8506). CALIFORNIA UNIV
SAN DIEGO LA JOLLA INST FOR COGNITIVE SCIENCE.

Saha, A., & Keeler, J. D. (1990). Algorithms for better representation and faster learning
in radial basis function networks. Paper presented at the Advances in Neural
Information Processing Systems 2.

Sanner, R. M., & Slotine, J. J. (1992). Gaussian networks for direct adaptive control.
Neural Networks, IEEE Transactions on, 3(6), 837.

Schaefer, H. H., & Wolff, M. P. (1999). Locally Convex Topological Vector Spaces. (pp.
36-72). Springer New York.

221

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197.

Sharkey, A. J. C. (1999). Multi-Net Systems Combining Artificial Neural Nets (pp. 1):
Springer.

Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs.
Advances in Neural Information Processing Systems, 18, 1257.

Specht, D. F. (1991). A general regression neural network. Neural Networks, IEEE
Transactions on, 2(6), 568.

Stakem, F., & AlRegib, G. (2008). Neural Networks for Human Arm Movement
Prediction in CVEs. Paper presented at the Proceedings of 3DPVT.

Statnikov, A., Aliferis, C. F., Tsamardinos, I., Hardin, D., & Levy, S. (2005). A
comprehensive evaluation of multicategory classification methods for microarray
gene expression cancer diagnosis. Bioinformatics (Oxford, England), 21(5), 631.
doi: 10.1093/bioinformatics/bti033

Stinchcombe, M., & White, H. (1989). Universal approximation using feedforward
networks with non-sigmoid hidden layer activation functions. Paper presented at
the Neural Networks, 1989. IJCNN., International Joint Conference on (pp. 613-
617). IEEE.

Sultan, S., & Marler, T. (2012). Multi-scale Human Modeling for Injury Prevention. 2nd
International Conference on Applied Digital Human Modeling.

Sun, Z.-L., Choi, T.-M., Au, K.-F., & Yu, Y. (2008). Sales forecasting using extreme
learning machine with applications in fashion retailing. Decision Support Systems,
46(1), 411.

Suresh, S., Saraswathi, S., & Sundararajan, N. (2010). Performance enhancement of
extreme learning machine for multi-category sparse data classification problems.
Engineering Applications of Artificial Intelligence, 23(7), 1149.

Suresh, S., Venkatesh Babu, R., & Kim, H. J. (2009). No-reference image quality
assessment using modified extreme learning machine classifier. Applied Soft
Computing, 9(2), 541.

Ting, K. M., & Witten, I. H. (2011). Issues in stacked generalization. J. Artif. Intell.
Res.(JAIR), 10, 271-289.

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks.
Artificial Intelligence, 70(1), 119-165.

Trippi, R. R., & Turban, E. (1992). Neural Networks in Finance and Investing: Using
Artificial Intelligence to Improve Real World Performance: McGraw-Hill, Inc.

222

Twomey, J. M., & Smith, A. E. (1998). Bias and variance of validation methods for
function approximation neural networks under conditions of sparse data. Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,
28(3), 417-430.

Van Heeswijk, M., Miche, Y., Lindh-Knuutila, T., Hilbers, P. A. J., Honkela, T., Oja, E.,
& Lendasse, A. (2009). Adaptive ensemble models of extreme learning machines
for time series prediction. Artificial Neural Networks–ICANN 2009 (pp. 305):
Springer.

van Heeswijk, M., Miche, Y., Oja, E., & Lendasse, A. (2011). GPU-accelerated and
parallelized ELM ensembles for large-scale regression. Neurocomputing, 74(16),
2430.

Walter, E., & Pronzato, L. (1997). Identification of parametric models. Communications
and Control Engineering.

Wasserman, P. D. (1993). Advanced Methods in Neural Computing: John Wiley & Sons
Inc.

Watrous, R. L. (1988). Learning algorithms for connectionist networks: Applied gradient
methods of nonlinear optimization. Technical Reports (CIS), 597.

White, H. (1989). Learning in artificial neural networks: A statistical perspective. Neural
Computation, 1(4), 425-464.

Widrow, B., Rumelhart, D. E., & Lehr, M. A. (1994). Neural networks: Applications in
industry, business and science. Communications of the ACM, 37(3), 93-105.

Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1(2), 270-280.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241.

Xia, Y. (1996). A new neural network for solving linear and quadratic programming
problems. Neural Networks, IEEE Transactions on, 7(6), 1544.

Xia, Y., Leung, H., & Wang, J. (2002). A projection neural network and its application to
constrained optimization problems. Circuits and Systems I: Fundamental Theory
and Applications, IEEE Transactions on, 49(4), 447.

Xia, Y., & Wang, J. (1998). A general methodology for designing globally convergent
optimization neural networks. Neural Networks, IEEE Transactions on, 9(6),
1331.

Xia, Y., & Wang, J. (2005). A recurrent neural network for solving nonlinear convex
programs subject to linear constraints. Neural Networks, IEEE Transactions on,
16(2), 379.

223

Xiang, Y., Arora, J. S., & Abdel-Malek, K. (2010). Physics-based modeling and
simulation of human walking: a review of optimization-based and other
approaches. Structural and Multidisciplinary Optimization, 42(1), 1-23.

Xiang, Y., Arora, J. S., & Abdel-Malek, K. (2011). Optimization-based prediction of
asymmetric human gait. Journal of Biomechanics, 44(4), 683-693.

Xiang, Y., Arora, J. S., & Abdel-Malek, K. (2012). Hybrid predictive dynamics: a new
approach to simulate human motion. Multibody System Dynamics, 28(3), 199-
224.

Xiang, Y., Arora, J. S., Rahmatalla, S., & Abdel‐Malek, K. (2009). Optimization‐based
dynamic human walking prediction: One step formulation. International Journal
for Numerical Methods in Engineering, 79(6), 667-695.

Xiang, Y., Arora, J. S., Rahmatalla, S., Marler, T., Bhatt, R., & Abdel-Malek, K. (2010).
Human lifting simulation using a multi-objective optimization approach.
Multibody System Dynamics, 23(4), 431-451.

Xiang, Y., Chung, H.-J., Kim, J. H., Bhatt, R., Rahmatalla, S., Yang, J., . . . Abdel-Malek,
K. (2010). Predictive dynamics: an optimization-based novel approach for human
motion simulation. Structural and Multidisciplinary Optimization, 41(3), 465.

Yang, S., & Wang, Q. (2000). Constraint satisfaction adaptive neural network and
heuristics combined approaches for generalized job-shop scheduling. Neural
Networks, IEEE Transactions on, 11(2), 474.

Yoo, J.-H., Hwang, D., Moon, K.-Y., & Nixon, M. S. (2008). Automated human
recognition by gait using neural network. Paper presented at the Image Processing
Theory, Tools and Applications, 2008. IPTA 2008. First Workshops on.

Zhang, B., Horváth, I., Molenbroek, J. F., & Snijders, C. (2010). Using artificial neural
networks for human body posture prediction. International Journal of Industrial
Ergonomics, 40(4), 414-424.

Zhang, G., Eddy Patuwo, B., & Y Hu, M. (1998). Forecasting with artificial neural
networks:: The state of the art. International Journal of Forecasting, 14(1), 35.

Zhang, R., Huang, G.-B., Sundararajan, N., & Saratchandran, P. (2007). Multicategory
classification using an extreme learning machine for microarray gene expression
cancer diagnosis. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), 4(3), 485.

Zhang, S., & Constantinides, A. G. (1992). Lagrange programming neural networks.
Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on, 39(7), 441.

224

Zhang, Y., & Li, Z. (2009). Zhang neural network for online solution of time-varying
convex quadratic program subject to time-varying linear-equality constraints.
Physics Letters A, 373(18), 1639.

Zhang, Y., & Wang, J. (2002). A dual neural network for convex quadratic programming
subject to linear equality and inequality constraints. Physics Letters A, 298(4),
271.

Zhang, Y., Wang, J., & Xia, Y. (2003). A dual neural network for redundancy resolution
of kinematically redundant manipulators subject to joint limits and joint velocity
limits. Neural Networks, IEEE Transactions on, 14(3), 658.

Zhang, Y., & Wu, L. (2008). Weights optimization of neural network via improved BCO
approach. Progress In Electromagnetics Research, 83, 185.

Zhou, Z.-H., Jiang, Y., Yang, Y.-B., & Chen, S.-F. (2002). Lung cancer cell identification
based on artificial neural network ensembles. Artificial Intelligence in Medicine,
24(1), 25.

Zhou, Z.-H., Wu, J., & Tang, W. (2002). Ensembling neural networks: many could be
better than all. Artificial Intelligence, 137(1), 239.

Zhu, Q.-Y., Qin, A. K., Suganthan, P. N., & Huang, G.-B. (2005). Evolutionary extreme
learning machine. Pattern Recognition, 38(10), 1759.

225

APPENDIX A

TABLES OF TRAINING CASES FOR THE PROBLEM OF MULTI-SCALE

HUMAN MODELING FOR INJURY PREVENTION

Table A.1: All 25 training cases and 3 test cases for the problem of predicting
the knee forces in the multi-scale human modeling system (walking task).

Training
Cases

Case
No.

Inputs Outputs
Angle
(deg)

GRF
(N)

Comp
Force (N)

Shear
Force (N)

Stress
(MPa)

Strain
(%)

Contact
Pre. (MPa)

1 -9.249 929.371 1403.287 -91.912 36.57 3.001 13.62
2 -9.889 853.45 1330.358 -92.136 34.39 2.953 13.42
3 -8.593 779.062 1255.265 -93.604 33.37 2.912 13.19
4 -6.345 719.322 1204.403 -29.731 17.75 2.099 6.97
5 -3.089 737.589 1069.118 -46.42 16.11 2.172 7.35
6 -4.327 740.215 1007.859 -39.526 15.14 2.001 6.68
7 -8.627 745.904 982.167 -105.696 28.19 2.811 13.72
8 -17.978 615.467 1155.365 -200.543 25.57 5.015 11.92
9 -47.072 0 546.691 74.991 24.87 0.672 4.22

10 -54.264 0 625.593 63.761 70.35 0.543 6.52
11 -55.277 0 737.708 48.094 56.12 3.892 5.22
12 -49.331 0 816.652 51.361 18.43 1.276 5.49
13 -36.9984 0 550.895 -8.399 17.89 0.799 5.69
14 -8.809 0 117.679 -46.179 10.47 1.215 6.14
15 -1.511 0 119.392 -31.115 4.25 1.323 3.25
16 -0.847 0 236.328 12.998 5.83 0.311 1.11
17 -1.665 171.73 305.235 25.476 7.35 0.857 1.23
18 -3.991 740.47 1020.99 -40.089 15.098 2.212 7.51
19 -5.981 740.33 995.28 -61.4 21.05 2.48 8.48
20 -7.118 741.38 1284.14 -92.8 35.6 2.904 13.205
21 -12.249 756.17 1010.22 -142.6 27.9 3.49 13.45
22 -5.736 0 117.94 -41.65 6.98 1.287 4.54
23 -10.986 0 142.098 -42.051 10.001 1.025 7.51
24 -21.363 0 234.99 -41.589 10.72 0.667 3.41
25 -34.004 84.423 338.987 38.889 12.57 1.843 4.07

Test
Cases

1 -16.05 774.311 1038.043 -180.978 27.28 4.955 13.12
2 -21.363 0 234.993 -41.589 10.72 0.667 3.41
3 -4.158 709.491 1146.389 -36.801 16.32 2.129 7.13

226

Table A.2: All 25 training cases and 3 test cases for the problem of predicting
the knee forces in the multi-scale human modeling system (stairs ascent task).

Training
Cases

Case
No.

Inputs Outputs
Angle
(deg)

GRF
(N)

Comp
Force (N)

Shear
Force (N)

Stress
(MPa)

Strain
(%)

Contact
Pre. (MPa)

1 -74.371 261.514 633.264 214.648 40.31 2.618 18.38
2 -61.988 218.771 315.209 -224.29 49.11 6.156 33.13
3 -10.019 615.912 913.478 111.225 27.29 2.791 12.63
4 -29.836 707.33 1033.593 -119.684 29.48 2.888 13.37
5 -0.387 826.192 1301.548 30.841 26.34 1.757 7.17
6 -2.301 772.238 1275.569 47.706 28.99 1.151 7.23
7 -1.315 772.238 1244.253 69.076 32.15 1.164 6.39
8 -3.258 772.238 1252.824 -2.441 21.54 1.566 5.27
9 -6.228 772.238 1302.082 -27.308 19.49 2.182 7.24
10 -4.882 572.541 757.559 -78.532 14.37 2.231 7.78
11 -0.022 591.738 717.611 -35.225 8.88 2.662 6.91
12 -23.326 0 281.865 29.953 20.18 1.248 8.84
13 -58.031 0 546.781 63.601 30.48 0.805 4.63
14 -75.681 0 742.376 46.952 19.93 0.923 6.47
15 -81.719 0 262.291 -34.674 9.53 1.632 4.03
16 -79.802 0 191.915 -30.225 7.67 1.439 3.55
17 -77.593 0 154.615 -25.048 6.28 1.041 3.03
18 -68.224 236.704 529.82 5.981 42.97 3.961 22.85
19 -57.366 593.097 345.091 -222.123 49.34 4.821 26.32
20 -45.934 725.153 450.65 -126.63 48.82 4.731 21.95
21 -22.118 553.958 730.82 14.96 31.08 3.017 14.46
22 -3.196 0 598.37 5.091 14.92 1.892 7.34
23 -2.198 586.091 739.81 -49.827 11.98 2.451 7.18
24 -64.272 0 640.743 58.812 28.005 0.981 5.02
25 -46.566 0 429.35 55.921 28.93 0.712 3.01

Test
Cases

1 -5.017 772.238 1264.706 -9.317 20.94 1.731 5.76
2 -29.836 0 311.571 39.168 23.91 0.238 1.25
3 -75.272 0 476.067 46.409 18.97 2.489 6.14

227

APPENDIX B

TABLES OF NETWORK PARAMETERS VALUES FOR SIMULATED

PREDICTIVE DYNAMIC TASKS

Table B.1: The network basis functions, basis function
spread (𝝈𝝈) values, and their corresponding original training
cases for the walking task.

Basis function
ranking

Basis function
spread (𝜎𝜎)

Original training
case number

1 1.71 72
2 1.71 93
3 1.71 99
4 2.1 115
5 1.71 78
6 1.71 95
7 2.98 42
8 2.98 41
9 2.6 138
10 2.98 20
11 2.98 21
12 3.05 36
13 3.81 15
14 2.98 58
15 2.1 113
16 1.71 74
17 2.1 116
18 3.05 137
19 2.98 16
20 3.05 57
21 2.1 109
22 2.1 117
23 2.1 114
24 1.71 75
25 3.05 25
26 2.6 135
27 1.71 96
28 1.71 71
29 1.71 73
30 1.71 67
31 2.6 12
32 2.6 33
33 3.81 4
34 2.6 54
35 2.1 120
36 3.05 141
37 2.6 30

228

Table B.1: Continued.
38 1.71 94
39 1.71 88
40 2.6 51
41 3.05 136
42 3.05 46
43 3.05 130
44 2.98 142
45 2.6 9
46 2.98 59
47 1.71 92
48 2.98 38
49 3.05 50
50 3.05 134
51 2.98 17
52 3.81 211
53 3.25 8
54 2.98 143
55 3.05 232
56 3.05 253
57 3.81 216
58 3.05 29
59 3.05 31
60 3.05 131
61 3.05 237
62 3.05 258
63 3.25 10
64 3.05 49
65 3.05 133
66 1.71 80
67 1.71 101
68 3.81 7
69 3.5 32
70 2.1 121
71 3.81 1
72 3.05 43
73 3.05 22
74 3.05 127

229

Table B.2: The network basis functions, basis function
spread (𝝈𝝈) values, and their corresponding original training
cases for the go-prone task.

Basis function
ranking

Basis function
spread (𝜎𝜎)

Original training
case number

1 1.77 11
2 3.55 16
3 1.8 30
4 0.65 49
5 1.77 266
6 5.57 263
7 1.77 164
8 0.65 207
9 1.77 113

10 1.77 62
11 7.2 28
12 1.8 234
13 5.57 162
14 2.23 41
15 2.23 36
16 7.66 29
17 2.23 50
18 0.65 304
19 0.65 202
20 1.17 27
21 0.65 151
22 0.65 253
23 0.65 100
24 2.23 51
25 4.83 15
26 1.17 129
27 3.1 7
28 2.23 35
29 4.61 13
30 0.64 43
31 2.95 1
32 2.23 305
33 1.8 81
34 1.7 26
35 0.59 24
36 2.28 32
37 2.28 47
38 2.23 291

230

Table B.3: The full-body 55-DOFs and their change
in value (∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑) in the walking task

DOF number DOF change in value
(∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑)

1 0.011
2 0.011
3 0.003
4 0.025
5 0.036
6 0.022
7 0.032
8 0.06
9 0.027

10 0.023
11 0.043
12 0.021
13 0.023
14 0.038
15 0.014
16 0.028
17 0.042
18 0.019
19 0.014
20 0.009
21 0.012
22 0.018
23 0
24 0.08
25 0.002
26 0.008
27 0.009
28 0.016
29 0.009
30 0.013
31 0.017
32 0.005
33 0.014
34 0.002
35 0.005
36 0.007
37 0.023
38 0.021
39 0.002
40 0.015
41 0.014
42 0.025
43 0.035
44 0.016
45 0.054
46 0.028
47 0.018
48 0.023

231

Table B.3: Continued.
49 0.022
50 0.037
51 0.018
52 0.023
53 0.016
54 0.031
55 0.012

Table B.4: The full-body 55-DOFs and their change
in value (∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑) in the go-prone task.

DOF number DOF change in value
(∆𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑)

1 0.014
2 0.026
3 0.014
4 0.027
5 0.021
6 0.037
7 0
8 0.036
9 0

10 0
11 0.033
12 0
13 0
14 0.027
15 0
16 0
17 0.032
18 0
19 0.019
20 0.017
21 0.027
22 0.023
23 0.013
24 0.019
25 0.007
26 0.013
27 0.009
28 0.044
29 0.028
30 0.031
31 0.034
32 0.027
33 0.032
34 0.001
35 0.006
36 0.008
37 0.003

232

Table B.4: Continued.
38 0.006
39 0
40 0
41 0
42 0
43 0.027
44 0
45 0.027
46 0.029
47 0
48 0.014
49 0
50 0.029
51 0
52 0.024
53 0.038
54 0
55 0.019

233

	University of Iowa
	Iowa Research Online
	Spring 2015

	New neural network for real-time human dynamic motion prediction
	Mohammad Hindi Bataineh
	Recommended Citation

	PrelimPages
	ACKNOWLEDGMENTS
	ABSTRACT
	public ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	List of abbreviations
	List of symbols

	Ch1_Introduction
	CHAPTER I
	1.1. Artificial neural network background
	1.1.1. Biological analogy
	1.1.2. Artificial neural network as a data mining tool
	1.1.3. Regression with artificial neural networks

	1.2. Literature review
	1.2.1. Techniques in artificial neural network design
	1.2.1.1 Ensemble
	1.2.1.2 Knowledge-based neural network
	1.2.1.3 Extreme learning machine

	1.2.2. Large-scale applications
	1.2.3. Constrained problems
	1.2.4. Dynamics and human simulations

	1.3. Summary of literature review and motivation
	1.4. Hypothesis and research objectives
	1.5. Overview of the Thesis

	Ch2_RBN Background
	chapter II
	2.1. Radial-basis network (RBN) architecture
	2.2. Training techniques in radial-basis network (RBN)
	2.2.1. Fast training method
	2.2.2. Full-training method
	2.2.3. Network generalization
	2.2.4. Techniques for setting network parameters
	2.2.4.1 Basis functions centers
	2.2.4.2 Basis function spreads

	2.3. Discussion

	Ch3_New RBN Algorithms
	Ch4_New approachs for PD problems
	Ch5_Constraints Implementation
	Ch6_ANN for Simulation Analysis
	Chapter VI
	6.1. Introduction
	6.2. Method
	6.2.1. Interpretation of neural network parameters
	6.2.1.1 Basis function and its parameters
	6.2.1.1.1 Basis function centers (𝑼)
	6.2.1.1.2 Basis function spreads (𝝈)

	6.2.1.2 Output weights (𝑾)

	6.2.2. Task inputs
	6.2.3. Task outputs

	6.3. Results
	6.3.1. Example 1: walking task
	6.3.2. Example 2: going-prone task

	6.4. Discussion

	Ch7_Discussion
	chapter VII
	7.1. Summary
	7.2. Conclusion
	7.3. Future work

	References
	Bibliography

	Appendices
	appendix A
	appendix B

