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PREFACE

This book Computer Modelling of Seas and Coastal Regions is the first
volume of the two volume proceedings of the International Conference on
Computer Modelling of Seas and Coastal Regions and Boundary Elements
and Fluid Dynamics, held in Southampton, U.K., in April 1992.

The importance of accurate modelling of seas and coastal regions is empha-
sized by the need for predicting their behaviour under extreme conditions.
Problems, such as pollution of these areas, have become a major interna-
tional concern and the related environmental problems need further study
using techniques which can be used to determine the ways in which the
water systems respond to different effects and try to minimize the damage.
They can also lead to the development of early warning systems in combina-
tion with remote sensing equipment and experimental sampling techniques.
Furthermore, once a disaster occurs, the model can be used to optimize the
use of the available resources.

The conference addresses coastal region modelling both under normal and
extreme conditions, with special reference to practical problems, currently
being experienced around the world. Many of the delegates are actively
involved in the modelling of seas and coastal regions.

This volume includes sections on waves, tides, shallow water circulation and
channel flow, siltation and sedimentation, pollution problems, and computu-
tational techniques.

The organizer would like to thank the International Scientific Advisory
Committee, the conference delegates and all those who have actively sup-
ported the meeting.

P.W. Partridge
April 1992



SECTION 1: WAVES



Modelling Wave Propagation in Large
Areas

P. Milbradt, K.P. Holz

Institute of Fluid Mechanics and Computer
Application in Civil Engineering, University of
Hannover, D-3000 Hannover 1, Germany

1 Introduction

The aim of coastal engineering is to estimate the effects of coastal protection
structures. The erosion of coastal sections requires measures to regulate
the sedimentbudget. Beach protection works and coastal structures are
designed according to the local wave conditions.

During the planning phase it is necessary to have the appropriate in-
struments to estimate the effects of building measurements. There exist
theoretical procedures as well as hydrological and numerical models. In the
past the trend goes uniquely to the increase of the use of computers.

The commercial models - corresponding to their desired task - are ba-
sed on different calculation assumptions and solution algorithms and there-
fore they are not of universal use.

For their analysis large areas have to be modelled in order to deter-
mine the wave characteristics of deep water waves from different origin and
direction propagating into shallow water near shore regions. Numerical
treatment of nonlinear waves for such areas of some ten kilometers in ex-
tension is beyond the capabilities of workstations. A compromise between
numerical practicability and physical quality of the results may be based
on linear wave theory. This was shown by field measurments and statistical
analysis even for a near-shore groinfield [5].
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The following presented numerical wave model is a part of the program
system TICAD (Tidal Interactive Computation And Design) [12]. It was
developed for large-scale areas. The range of application encloses deep and
shallow water regions up to breaking zones.

2 Wave model: Theoretical background

The wave model is based on the numerical solution of analytical and empi-
rical approximation functions as they are given for instance in Shore Pro-
tectional Manual [1].

On the basis of the linear wave theory of AIRY propagation and chan-
ges of a monochromatic wave are calculated by the wave front method. In
the case of neglecting external forces (for example wind forces) and of brea-
king zones the method is based on the conservation of mean energy flux
between two wave normals. The mean flux of energy is proportional to the
product of the group velocity ¢, and the square of the wave height H:

H?
F=cg*p—*—’%—— (1)

Under deep water conditions (d > 0.5 * L) the wave propagates with
constant velocity ¢o (index 0 indicates deep water conditions). In this case
the wave length Lo, periode Ty and height Hy keep their values.

The wave parameters, except the period T, will change if the orbital
motion of the wave touches the bottom (d < 0.5% L) or if the wave will meet
an obstacle like a mole or an end of an island or if it enters into a region
with currents. These influences are called shoaling, refraction, diffraction
and current-refraction. They are taken into account by the wave model as
well as breaking of the waves due to very low water depth and steepness
of the wave. In addition the consideration of a windfield is possible. The
influences of perculation and reflection are neglected.

The necessary information about the bathymetry of a coastal region are
taken from the digital terrain model (DTM). The DTM allows the fitting at
every arbitrary terrain bathymetry due to triangular latticenet with variable
width of the meshs. On the basis of that latticenet the tidal induced current
are calculated by a 2-dimensional hydrodynamic model based on FEM. The
result of this tidal calculation (current, water level) serves as input for the
wave model.
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3 Calculation of the wave parameter

Wave length

The wave length is calculated by the implicitly equation:

_gxT*? 2+«mxd
L_2*7r *tanh( 7 (2)

Shoaling

Entering more shallow water the wave begins to ’feel bottom’, when the
water depth is about one half of the wave length. The waves are hereafter
slowed, shortened and steepened, as they travel into more shallow water.
This process is called shoaling. The group velocity is calculated by

4xmr*d
_ _¢ L
Cg =Cc*n = 9 * I:l + Sinh(‘hz*d)} (3)

with

(4)

[
I
SIS

The shoaling coeflicient k, is calculated {or an arbitrary terrain point

by

ky, = —2="m (5)
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Depth-Refraction

If the wave front in shallow water meets a bottom contour at an angle, the
direction of travel is changed. This process of refraction is due to the fact,
that water waves propagate more slowly in shallow than deeper water, and
therefore the front tends to get aligned with the contours. This phenomenon
is comparable with the refraction of the light described by the SHNELL’s
refraction law. The change of the wave height due to refraction is calculated

using a formula from WIEGEL [11]:

_H_ [
Sl TAATES U

with b =distance between the orthogonals.
Refraction appears always in superposition with shoaling.

Current-Refraction

Changes of phase velocity can also be caused by currents, resulting in
current-refraction. In case of coincidence between current and wave pro-
pagation direction the wave length will be decreased and the wave height
will be increased. Opposite directions cause reverse effects. The influence
of the current is calculated using an approach of JOHNSON [6]. In Fig.1
the geometrical relations are described for the general case. A wave pro-
pagates under the angle « from still to flow water region. The change of
the wave parameters are calculable using the geometrical conditions at the
discontinuation surface, assuming that the change of the velocity is a jump.

current \J/ u no current

I u,=0

Wave crests

Figure 1: Current-refraction
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Hence, the following relations are valid:
wave length

Ly L
sin(a) ~ sin(B)

propagation velocity

1 - Co
sin(a) t sin(f3) ©)

With the conservation of enery flux and the above equations the change
of the wave height is calculated:

_ Hg _ Cqy * b1
koo = 97, = \/(cg2 T uxsin(B)) * b (10)

Diffraction

Diffraction is the propagation of a wave behind an obstacle as a mole or an
end of an island. In analogy to the gecometrical optic the change of wave

height is calculated using the equation of SOMMERFELD.

Fig.2 shows the relations between the angles and equation (11) is the
solution of the SOM M E RF E L D-equation.

F(T‘,O) — f(d) * e—ikr*cos(a-oo) + f(O”) " e—-ikr*cos(()—oo) (11)
with
o = 2% k*r*sin<0_go> (12)
T 2
o = =2 k*r*sin(0—00> (13)
T 2

1 ) 7 —imt
flo) = _2’_2*/ 5" dt (14)

1 3 o’ —imt
7o) = '2“*/ e dt (15)

2

ko= 22T (16)

L
i o= =1 (17)
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\.

Area of
Dxﬂ'ractlon {¢.6)
§ 2
Area of 0% 6“
Reflextion / Q'\xi: o?‘?‘&

Figure 2: Diflraction

The diffraction coeflicient £’ is the ratio of local to incoming wave:

, _ H(r,0) i
K=—p— =| F(r,0) | (18)

In the wave model the effect of diffraction with effect of shoaling, re-
faction and current-refaction are interacting, therefore is valid:

Hy=k,xk xk *k, + Hy. (19)

Breaking of the waves

The breaking of the waves due to very large steepness can be checked using
the generalised M IC H E-criteria in consideration of shallow water conditi-
ons [1]:

HB 2% m*xd
A = 0.14 * tanh <——L-—> (20)

The index B is considering the breaking conditions.

The assumption from WEGGEL [10], which is derived from the ana-
lysis of a lot of labor experiments corresponds to the breaking due to very
low water depth independence on the underwater beach slope:
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HB a * HB
ik A it 21
d b g*T? (21)
with
a = 43.75% (1 — ') (22)
1.56
= 7 2
b 1 + e—19xm ( 3)
m = is the underwater beach slope
Both breaking criteria are checked by the wave model. The

change of the wave height due to energy lost during breaking will
be calculated using an approach from HORIKAWA/KUO [7] and
ANDERSON/FREDSOE [4] . In the distance x behind the breaking

line one gets the following wave height formula:

H =0.12ez

— =0.35+0.65*%¢ B (24)
Hpg

Bottom friction

For waves advancing in still water it is usual to assume that the variation
in height with distance may be represented, locally, by

H(zs) = H(zy) * emo*=2="1) (25)

where @ 1s a wave attenuation coefficient. The coefficient a is approxima-
ted by

AL
(21., ) (26)
7+ (B + sinh (234))

ay =

where v is the kinematic viscosity and a; is the component of ay attri-
butable to energy dissipation in the boundary layer at the bed [8]. The
bottom friction has the status of lower importance for problems of coastal
engineering.

Wind field effects

In most coastal locations in the world no wave records deriving from field
measurements are available and both the time scale for the design and
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financial resources are available make the installation and operation of such
devices unfeasible for at least one climatological year.

The dominant wave parameters are generally computed a priori and if
possible supported by several measurements. Using the a priori calculation
you have the possibility of deterministic and statistic methods. Using the
deterministic method the parameters of a ”decisive” wave, in generally from
engineers point of view the important H,/3 value and the accessory period
are defined. The statistic methods are describing the totality of waves in a
field of waves. The North Sea is a typical case of the ”Jonswap-Spectral”
based on measures. Both methods have not implemented any informa-
tion about the effects of bathymetry and the shore for the wind direction.
By the numerical modelling there are possibilities given, to calculate the
development of wave height also in shallow water areas with complicated
depth partitionation, by implementation of refraction, shoaling, diffraction
and breaking. Also it is possible to get information about the influence
of realistic wind events with differences in surface and time. The program
calculates the change of the significant waveheight H,;3 and wave priod in
an wind field caused by wind appropiated by [1]:

1
3 -3 4 (9F)?
i N 5.65 % 10~2 ( )
‘Z—Q = 0.283 x tanh [0.53 * <%]]—2—) ] * tanh ga 3 (27)
2 4 tanh [0.53 * (ﬂ)
A

3 3.79 % 1072 * (££)°
%Z = 7.54 * tanh [0.833 . <g—’;> ] « tanh (”3‘)_ (28)
4 tanh [0.833 « (%)
A

A

with Us4 = wind velocity
F = wind fetchlength.

The Jonswap-equations can be calculated alternatively.

In the program, the above equation have been modified. Now the dif-
ferences of wave height along the running direction are calculated. On this
way the influence of bathymetry and the shore course on the development
of sea violence can be considered by observing the waves step by step. In
the actual program release the uniform wind conditions for the target area
can be calculated.
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Wave induced streaming

The streaming in nature are superpositon of tide and wave induced strea-
ming which are interacting.

Now one can calculate the induced forces on the background of socalled

radiation stresses by LONGUENT — HIGGINS and STEW ART [9].

It is convenient to investigate how a progressive wave contributes,
through the induced horizontal momentum and pressure components, to
the dynamic equilibrium of a water column and to define and formulate the
radiation stress magnitudes. The magnitudes will be used in the circulation
models.

Independently of the first order wave theory postulation that waves
transport no mass in the direction of their propagation due to the periodicity
and symmetry of the velocity u magnitude, there is a surplus of momentum
flux showing that gradients of induced mean momentum.

Now one can calculate the socalled radiation stresses

Spe = (n ¥ cos(0) + 1 — %) «E (29)
Ssy = (n*sin(0)cos(0))  E (30)
S,y = (n v sin?(0) + n — %) « E (31)

(32)

where, £ = $pgh?, the wave enery, n = the ratio of group velocity to wave
celerity and 0 is the angle between the direction of wave propagation and
the positive x-axis.

The driving forces are found from the gradients of the wave action,

leading to
1 8§Sex  6Spy
o= p*h*(&z + 5y> (33)
1 6Szy  6Syy
Fyo= p*h*(5y T 5 (34)
(35)

With this forces one can calculate the induced velocity by a streaming mo-

del.
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4 'Test cases and applications

The wave program calculates the change of the wave parameters H, L, T,
the direction and the possible breaking of a monochromatic wave for the
cutting points between wave crests and orthogonals. In this case the qua-
lity of this approach is dependent on choosing the step of calculation in
dependent on the task. The wave parameters are constant between two
orthogonals. The results of the calculations can be written in the following
ways:

1. Representation of the wave crests with and without orthogonals in 7
colours indicating the wave height reaches. The boundaries of this reaches
can be choosen freely.

2. Output of the wave parameters including the streaming induced forces
at determinate points, at the so called pegel points.

3. The same information can output at the points of the digital terrain
model.

The calculation of the wavepropagation by the linear wave theory gives
good results for a lot of practical cases. In the following for some examples
the precise restitution of the model is demonstrated.

As an example the test region is modelised in the same way as published
by DE VRIEND in [2] and [3]. This is a system with a curved coastline.
The distribution of the depth is represented in Fig. 3. For this region the
waves simulation is calculated.

The wave distribution is given in Fig. 4, the dotted region shows
the breaking of waves. Using in Fig. 6 represented components of forces
the wave induced streaming from Fig. 7 is calculated as an example. The
correctness of the calculation be examaind in the case of the above presented
test region. Of course it is necessary a more complete verification by other
natural data.

A large scale area application for this model is the coastal protection
investigations in the coastel region near the island of Sylt. Sylt is located in
the south-east part of the North Sea near the border between Germany and
Danmark. In Fig. 7 the distribution of the depth is represented. Besides
the effects according to the bathemetry one can good seen in Fig. 8 and
Fig. 9 the effects of tidal streaming at the ends of the island.

The model reproduces well-known results for finite-amplitude waves.
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P 10.0 m

\N
—_——/ _—20m
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) 230 300 1
——

Figure 3: Bathematry of testregion

Figure 4: Wave distribution
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Figure 5: Wave height distribution

Figure 6: Current induced forces
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Figure 7: Wave induced currents

Mean Waterlevel because of waveinfluence

Figure 8
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Figure 9: Bathematry arround Sylt




17

Computer Modelling for Seas and Coastal Regions

aseyd gqa Suunp
£3100[9A JU2IIND puE UOINQLISIP JYBY 2aBM ] 2181

s $ra 8271 —

aseyd qqa Suunp uornquysip aaepy 01 2131y

b AT B T O T I L O T = S PO TR B0 To S P OO WU IS ST IRTTE WD Y ISE L B2 -watt] WONT G wRCD-IE




18 Computer Modelling for Seas and Coastal Regions

aseyd pooy Suunp
Kyoo[aa juorind pue uonnquistp 13y aarpy g1 21031

b L M B L I L L B

ey

[ —_—

IR vt

aseyd pooy Buunp uonnquisip aavpy :z[ 21081y

YISl B2 0wt WIS SRR




Computer Modelling for Seas and Coastal Regions 19

References

(1] Shore Protection Manual. U.S. Army Coastal Engineering Research
Center, Washington, 1984.

[2] H. J. de Vried. On the applicability of a highly simplified wave propa-
gations model in the computation of wave-driven coastel currents. In
Progress report W 439-8, Waterloopkundig laboratorium delft hydrau-
lics laboratory, December 1982.

[3] H. J. de Vried. 2 DH mathematical modelling in coastal morphology.
In Furopean Coastal Zones, Athens, 30.Sep.-04.Oct. 1985.

[4] O.H. Anderson; J. Fredsoe. Transport of Suspended Sediment Along
the Coast. Tech. Univ. Danmark, 1983.

[5] V. Sundar; H. Noethel; K. P. Holz. Wave kinematics in a groin Field
- Frequency domain analysis. Coastal Engineering Journal, 1992. ac-
cepted for publication.

[6] J.W. Johnson. The Refraction of Surface Waves by Currents. Tran-
sactions, American Geophysical Union, 28(6), 1947.

[7] C.T.Kuo K. Horikawa. A study on wave Transformation inside Surfe
Zone. Coastal Engineering Conference, 1, 1966.

[8] J.F.A. Sleath. Sea Bed Mechanics. John Wiley & Sons, 1984.

[9] M. S. Longuet-Higgins; R. W. Stewart. Radiation stress in water wa-
ves,” A physical discussion with application”. Deep Sea Res., 11(4):225-
239, 1977.

[10] J.R. Weggel. Maximum Breaker Height. Journal of Waterways, 98,
1972.

[11] R.L. Wiegel. Oceanographical Engineering. Prentice Hall International
Series in Theoretical and Applied Mechanics. N.J. Englewood Cliffs,
1964.

[12] K.P. Holz; M. Feist; H. Noethel; P. Lehfeldt; A. Pluess; U. Zanke. The
TICAD-Toolbox Applied to Coastal Engineering problems. In Hydrau-
lic Engineering Software Applications in Computational Mechanics Pu-
blications, 1990.



Stokes Drift Effects Computed From
Measured Wave Data

G. Piro (*), E. Pugliese Carratelli (*), E. Sansone (**)
(*) Dip. Difesa Suolo, Universita della Calabria,
Montalto Uffugo (CS), 187040, Italy

(**) Istituto Universitario Navale, Via Acton 38,
Naples, 180133, Italy

ABSTRACT

The effect of mean mass transport on the surface
of the sea due to wave movement and known as
"Stokes Drift" plays an important role in
forecasting the movement of floating pollutants and
is also of paramount importance when evaluating the
boundary conditions for the computation of coastal
circulation; this paper presents an attempt to
supplement the usual approach based on monochromatic
waves or standard spectral simulations with an
analysis of measured time series of waves.

Wave heights and periods are computed from
records of water height data obtained with a
Datawell wave gauge located in the Bay of Naples in
different sea states through the usual zero-
upcrossing procedure, and wave parameters are
estimated; once such parameters are known and a
wave theory 1is assumed the computation of the
drift velocity is quite straightforward.

These computations yield a mean drift velocity
for all available sea records, which include both
calm and very rough sea conditions; correlations
are found to relate drift to the sea state.
INTRODUCTION

The presence of waves on the surface of the
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water has very important effects on the transport
of mass in the sea, and therefore also on the
movement of pollutants.

The mean current resulting on the surface of the
water as a consequence of the wavy movement is known
as the "Stokes' drift" or simply "drift", and its
effects are very important when dealing with the
movement of floating pollutants (e.g. oil slicks),
and particularly so in the Mediterranean, where the
tidal effects are often negligible.

The energy transfer between the wind and the
upper layer of the sea is mainly based on the
wave drift; in fact the waves themselves,
in spite of being a basically irrotational
phenomenon, act as a sort of intermediate mechanism,

or "filter" (Bye, [1]) between the tangential
stress and the turbulent structure of the upper sea
layer. This effect does of course interact with

all the other effects, such as the bottom friction,
the tides, the Coriolis forces, and the inertia.

The time scales of the circulation of the whole
water body are, of course, much longer than the
typical periods of the wind waves; when the global
equations of the circulation are considered
the drift caused by the waves is therefore taken
into account separately and it provides - in
mathematical terms - the upper boundary conditions
for the underlying currents.

The scientific literature on drift and drift-
related phenomena is of course very rich; we
shall thus very quickly review only the papers
which we consider to be relevant to the results
dealt with in this paper.

After Stokes' original work in the last century,
the milestone of theoretical research in the field
of wave drift is probably Longuet-Higgins' [2]
classical paper which is of special interest when
dealing with shallow waves, where the effects of
viscosity are important. However, the results by
Russel and Osorio, as reported by Stolzenbach et
al. [3] and by Dyke and Barstow [4] can be used to
assess the acceptability of non viscous theories
in the context of our work, which only deals with
deep water waves.

The paper by Bye [1] quoted above, and another
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one by Unulata and Mei [5] are particularly wuseful
in clarifying the concept and nature of the wave
drift at sea. On the same line it is also worth
mentioning a paper by Kit and Stiassnie [6], and one
by Chu [7], together with the discussion of this
latter by Darlymple and Svendsen [8] which clarify
some conceptual problems about the drift and the
possibility of computing it from the existing requ-
lar wave models.

A very interesting discussion of the 1interaction
between the waves, their drift and the currents is
presented in [9]; the relative importance of
Eckmann layer and wave drift in determining surface
mass transport, 1is given in [10]

Two papers by Kenyon [11,12] supply a wave-
spectrum based analysis of the drift and an
evaluation of the mean surface velocity as a
function of the wind speed for random waves in
fully developed seas; more detailed numerical
results on the same line, as well as experimental
data obtained in a water tank for both
monochromatic and random waves, are presented by
Dyke and Barstow [4].

Bullock and Short [13] offer some useful
laboratory experimental results for water particle
velocities in regqular waves, together with an
assessment of the predictive capabilities of various
theories.

The procedure we present in the following
is based on directly processing the time series of
the water height as measured with a wave meter,
rather than making use of a simulation based on the
spectral analysis as some of the researchers quoted
above. Through this approach the experimental data
can be more directly employed, and higher order
wave theories can be used in order to yield a more
reliable estimate of the drift velocity, as compared
with the spectrum/linear theory approach.

PROCEDURE AND RESULTS

The water height data records have been obtained
with a Datawell accelerometric buoy wave gauge
located in the Bay of Naples in a period of time
spanning from the summer 1986 to the winter of 1987,
at a depth of 90 metres.
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Details on the location and the experimental
techniques and the pre-processing procedures -
which, however, are rather simple by present
standards - have been supplied elsewhere (Pugliese
Carratelli and Sansone, [14]). It is enough here to
say that the sampling rate is 0.39 seconds, and
each single record of data is composed by 512 or
1024 samples, thus yielding a record length of
about three or six minutes. 69 three-minutes and 34
six-minutes records were considered.

Wave heights and periods have been computed from
the water height data through the usual zero-upcros-
sing procedure, each record thus yielding a number
of waves varying around 30 (for the shorter 512 sam-
ples data) or around 60 (for the longer ones).

A knowledge of the height and the period of a
wave is not sufficient to compute the drift; a
mathematical theory with the appropriate
parameters must be assumed so that all the
hydrodimamic properties are known.

This procedure has been followed twice for all
the data records, by computing the displacement due
to the drift for each single wave with both Stokes
II and Stokes III theories.

Once this is done, the average drift velocity
can be simply evaluated for each record by
performing this computation for each wave of the
record, summing up the displacements and dividing by
the total duration of the wave train; this procedure
automatically takes into account the different
duration of the single waves and thus implicitly
supplies correct weighted average.

When the Stokes II theory is used, the
computations are quite straightforward, since a
classical analytical solution for the drift velocity
Ud is available, again from Stokes' own work, (see
for instance Stolzenbach et al., [3] or Dyke and
Barstow, [4]):

H? o K cosh[2 K (z+h)]
Ug = i (la)
2 sinh?(K h)

where H, o and K are the height, the wave
number and the angular frequency respectively; z is
the vertical abscissa, measured from the mean free



Computer Modelling for Seas and Coastal Regions 25

surface, and h is the depth. K is obviously related
to h by the dispersion equation (the deep water
hypothesis has been held valid in all the cases
examined).

To account for mass balance in simple steady-
state one dimensional flows a further term must be
added to include a current in the direction opposite
to the wave velocity, thus yielding:

cosh[2K(z+h) ] coth (K h)
Ugq = H?0K ] (1b)

2 sinh?(K h) 2 K h

(in order to be consistent with the deep water hy-
pothesis the constant term should be very small)

For more complex wave theories there is no such
simple and widely accepted formula for the drift
velocity. Even for the relatively simple Stokes III
model the equations are quite complicated and cum-
bersome; the authors have employed the formulas
supplied by Scarsi and Stura in [15].

The results are supplied in fig. 1) and fig 2)
where the average drift velocity is plotted against
the energy E of the sea state, as evaluated by
computing the MSR of the n recorded water height
values Yi in the relevant record:

1/2
E = [ z? ( Yi?-Ym?) / (n-1) ] (2)
1

(Ym is of course the average of the Yi values)

The results are plotted in the figures from 1
to 3.

Figure 1 presents the drift velocity Ud, calculated
according to equations la) and 1b) for each single
record, as a function of E; a strong correlation is
visible, even though there is a much wider
dispersion if compared with the results of previous
researchers in the field, who -as stated above -
worked with analytical and numerical derivations
from theoretical wave spectra. The dispersion of
values we found is obviously due to our use of real
experimental data rather than of an idealized
description of the sea state.
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Also reported are the best fit straight lines of
the correlations; the difference between the re-
sults obtained with the two equations is so slight
that the two lines practically coincide, as could be
expected due to the deep water hypothesis.

In figure 2 the Ud values are plotted as computed
with the Stokes III theory, and again the best fit
line is calculated and drawn; while the overall
trend is the same, there is a difference from the
results supplied in the previous picture.

Such a difference is better highlighted in the
following picture (figure 3), where the drift
obtained with the two different theories are
directly compared.

The correlations is strong, but there are enough
differences to suggest that perhaps a closer look at
higher order theories when evaluating mass transport
in real sea would be worth while.

Finally, it might be interesting to estimate
the drift wvelocity as a function of the wind
speed; unfortunately this kind of analysis, which is
straightforward for a fully developed wave field
would lead nowhere in our situation where the sea
state is the result of very complex meteorological
and geographical situations.

The interested reader can refer to a previous
work (Marone et al, [15]), where most of the data
employed here have been analyzed and correlated to
the measured wind velocity.

CONCLUSIONS AND FUTURE DEVELOPMENTS

Recent research (see for example Benassai G.,
Rebaudengo Landd and Sansone, [16]) is evalua-
ting the possibility and the reliability of
spectrum-based procedures for simulating various
sea state parameters. The present work is in fact
meant to supply some elements which should eventual-
ly lead to a similar assessment for the surface wave
drift.

The reader may find it somewhat disconcerting
that no experiments on the drift in real sea condi-
tions have been quoted or considered in this con-
text.
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It 1is our opinion however - also on the basis
of experience gained during sea measurement
campaigns carried out in the past by one of the
authors (De Maio et al., [17], Spezie et al.[18])
- that the experimental difficulties involved, as
well as the conceptual difficulty of separating
the various effects that concur in determining
the movement of floaters or tracers, render the
analysis of field data a poor tool towards the
comprehension of sea wave drift; unless, of course
a clear picture is first gained of the interaction
between the sea state and the movement of its upper
surface itself.

The experimental situation may have changed
now that more sophisticated techniques are
available, such as microwave measurement water
surface velocity, so that it might soon be
possible to effectively test different models
against real field data. With this work we hope to
have supplied some useful elemnts to the future
builders of such models.
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The Transfer of the Donelan et al.
Spectrum on Shoaling Water
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ABSTRACT

Following a procedure adopted to rederive the TMA spectrum, a model
suitable to transfer the Donelan et al. sea wave frequency spectrum from
deep water to shallow water is suggested. Some considerations about the
changes of the spectral width, the energy density and the spectral height
are carried out and a first approach analysis of the non-linear effects is
given.

INTRODUCTION

Starting from an observation by Phillips [1,2], Kitaigorodskii et al. [3,4]
introduced a self—similarity hypothesis which stipulates that the form of
the relationship giving the sea wave spectrum in the equilibrium range
isidentical whatever the depth, when the wave number space is considered.
With reference to that range !, Kitaigorodskii et al. took into account,
on deep water, the Phillips spatial spectrum

Fro(ky)=(a/2)k,’ e9!
and, according to the above-mentioned hypothesis, introduced on finite
depth the spatial spectrum

Fo(k,h)y=(as2)k® (2)
where k, k, are the wave numbers, « is the equilibrium parameter and

h is the depth of the bottom 2.
It is worth noting that the spectrum (1), which presupposes a wave

1 The equilibrium range of a spectrum is the part just above thc wave
number peak (wave number spacc) or the frequency peak (frequency
space).

2 Hereafter, the index o indicates deep water conditions and the index
p means a quantity referred to the spectral peak.
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generation in steady condition, was obtained on purely dimensional
grounds and its shape was regarded as governed by the net energy input
from wind and wave breaking due to the gravitational instability.

To refer the spectrum (2) to the frequency f space, Kitaigorodskii et al.
used the simple algebric relationship

Sp(f h)=F,(k,h)[dk/df] 3)
where Sp(f,h) is the frequency (or temporal) spectrum on finite depth

and f, is the peak frequency. The derivative is performed by adopting
the linear isotropic dispersion relationship

(2nf)?=gkTh(kh)=gk/x(0,) (4)
where x is a dimensionless function which is found from
XTh(opx)=1 (S
op being the dimensionless depth parameter
g,=2nfVh/g (6)

with g the acceleration of gravity. At the end, the spectrum (3) becomes
Sp(f ) =ag®(2m) 7 f°E(0,) (7)
Fx being the dimensionless depth function (Kitaigorodskii factor)
Ee=x"[1+205x/Sh(20501" (®
which correctly exhibits the value one on deep water where the Phillips
frequency spectrum is
Sro(f)=ag?(2n) " £? (9
showing an f-5 power law as the principal frequency dependence.
Thus, by Eq. (9), Eq. (7) can be written as
Sp(f h)=5,,(f)z2,(0,) (10)

after assuming f, equal to f,, whatever the depth.

Bouws et al. [5] replaced in Eq. (10) the Phillips frequency spectrum
Spo(f) by a JONSW AP frequency spectrum Sj,(f) [6] and extended the
relationship so obtained to the entire range of frequencies, giving rise to
the TM A model. This model was tested with an extensive set of field data
and was rederived by Scarsi et al. [7] in order to make it suitable to verify
the self-similarity hypothesis in the k space.

The modified TMA model so deduced differs from the original one in
the shape functions ¢pps and ¢y and it gives the frequency spectrum

Se(f h)=ag®(2r) 20 (f Fp X Xp) -
O, (F o X Xpr Y WIEL(0,) (11)

¢,,M=exp[-l.25(f\/_)_(/fp\/;(—p)-4] t12)
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8, = exp[In(v)exp[-0.5( %/ f Ko~ 1)/ 007 ]] (13)

with y the peak enhancement factor and w the peak width parameter.

In the present investigation, the Donelan et al. frequency spectrum Sp,(f)
on deep water [8] is taken into account and a model suitable to give the
relevant spectrum in shoaling water is supplied by following the procedure
adopted to obtain the modified TMA model. In detail: the spectrum Sp,(f)
is transferred into the spatial spectrum Fp,(k,); the form of the Fpy(k,)
spectrum is kept for the spatial spectrum Fp(k,h) on finite depth; the
spectrum Fp(k,h) is transferred into the frequency spectrum Sp(f,h) by
introducing the derivative of Eq. (3).

Adopting the spectrum Sp(f,h) so constructed, the following topics were
dealt with: the behaviour of the spectral width, the energy density and
the spectral height on shoaling water; the comparison of the obtained
energy density and spectral height with those deduced by the modified
TMA model; the analysis of the non-linear effects through a first approach
scheme based on an extension and an adjustment of the second order
model suggested by Tayfun & Lo [9] on deep water.

THE DONELAN ET AL. SPECTRUM ON FINITE DEPTH

The Donelan et al. frequency spectrum Spo(f) on deep water was
determined from very controlled data obtained in field (Lake Ontario)
and in a large laboratory tank and it shows an f-4 power law as the
principal frequency dependence. After some simple manipulations carried
out starting from the original form, this spectrum can be given as

Spe(f) =g @) U FEF PG (F F )00 (f o f oo Yo ) (14)
where the shape functions ¢py, and ¢y, are supplied by
O rmo = eXPL=(F/ £ o) "] (15)

9,0 = exp[In(y)exp[-0.5(f/f - 1)*/w?]]. (16)

The wind velocity U is considered in the overall mean wave direction
and the parameter a. (related to the equilibrium parameter «), the peak
enhancement factor vy and the peak width parameter w are expressed by

a.=0.006; 0.83<A4,<5 (17a)
y=1.7; 0.83<4,<1 (17b)
y=1.7+6lg(A,); 1<A, <5 (17¢)
w=0.08[1+4/A2]; 0.83<4,<5 (17d)

where the dimensionless parameter
A°=2nfp°U/g (18)
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is equal to the ratio U/cp,, cpo being the phase velocity corresponding
to the spectral peak.

The spatial spectrum Fp,(k,) related to the frequency spectrum (14) is
deduced from

Fpo(ko)=Sp(fIldf/dk,] (19)
where the derivative is performed using Eq. (4) on deep water, i.e.
(2nf)*=gk,. (20)

It turns out
Fpo(ko)=(a./2)g "7 Uk 2%k 0% 0 oo (K o K po )0 50 (K s K por Yo ) (21)

where the functions ¢py, and ¢j, are supplied by
O ruo = €XP[~(YE, 7K o) "] (22)
6,0=exp[In(y)exp[-0.5({ka/k po-1)°/w?]]. (23)

The parameters a, v, w are given by Eqs. (17) after replacing the parameter

4, by
B,= Uk, /g (24)
deduced from Eq. (18) taking into account Eq. (20).

To obtain in finite depth A4 the spectra Fp(k,#) and Sp(fih)
corresponding to the spectra Fpo(k,) and Spo(f) on deep water, the
procedure which makes it possible to deduce the spectra (2) and (7)
starting from the spectrum (1) is adopted. This procedure leads to the
following results.

The spatial spectra Fp(k,h) are expressed by
Fp(k,h)= (a./2)g'°‘27sU°'ssk’2'5k;0'2254>,.M(k,kp)4>,(k. K, Y, w) (25)

where the functions ¢py and ¢; are supplied by

Oru = exp|[-(Jk7k,) "] (26)
¢,=exp[ln(y)exp[—o,S(,/k/kp-1)2]]. (27)

The parameters as, 7, w are given by Eq.(17) after replacing the parameter
4, by
B=U\Jk,/g (28)

deduced from Eq.(24), taking into account the self-similarity hypothesis.
Thus, the frequency spectrum Sp(f,h) is

sp(fvh)= a.g1.45(zn)-3.15U0.55f-4f;0.45¢’M(f.fp’x,xp).

O Fp X Xpr Yy W)ER(TprOpp) (29)
where the functions ¢py and ¢y are supplied by
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b ru = exp[-(FIX/ F VX)) "] (30)
6, = exp[In(y)exp[-0.5(fVx/ £ ,x,- 1)/ w?]] (31)

which show that the function ¢; is identical to that relevant to the modified
TMA model (See Eq.13).

The function x is found from Eq.(5); the parameters o, and opp are defined
by Eq.(6); the depth function Ep is expressed by

Ty=x x0T +202x/Sh(202x)]"" (32)

and it differs from the Kitaigorodskii factor (See Eq.8).
Besides, the parameters as, vy, w are given by Eq. (17) after replacing the
parameter 4, by the parameter

A=21Uf \x,/9= A%, (33)
deduced from Eq. (28) taking into account Eq. (4).

On deep water, the functions x and Ep assume the value one and Egs.
(29), (30), (31), (33) correctly become Egs. (14), (15), (16), (18).

THE BEHAVIOUR OF THE DONELAN et Al. SPECTRUM ON
SHOALING WATER

Figures 1 and 2, suggested as an example, show the spatial spectra Fp(k,h)
and the corresponding frequency spectra Sp(f,h) for different depths
ranging from deep water to shallow water conditions. The values of the
selected depths & and those of the parameters 4, and B,, peak frequency
fpo» peak wave number kp, are indicated in the same figures.

Table 1 gives the values of the following quantities: the zero—tA moments
mogp and the maxima Fyp for the spectra Fp(k,h); the zero-th moments
mgp, the maxima Spyp, the spectral width e,p as defined by
Longuet-Higgins [10] and the energy densities Ep for the spectra Sp(fh),
taking into account that e;p and Ep are expressed by

172

€,p=[mopm,,/m3,- 1] (34)

Ey=pgmy, (39)
where p is the density of the water and m,p, myp are the 1st and 2nd
moments of the spectra Sp(f,h) considered in the range of frequencies
from 0.4 f, to 6.5 f,.

Obviously, the energy densities of the spectra Fp(k,) are equal to the
ones of the spectra Sp(fh).
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Figure 1 - Spatial spectra Fp(k,h).
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Figure 2 - Frequency spectra Sp(f,h).
h MoED Fmp mop SMD €D Ep
(m) (m?) (m3) (m?) |(m?/Hz) (N/m)
® 2.66 63.7 2.66 46.8 0.44 26090
50 2.45 57.1 2.45 37.4 0.46 24030
30 2.03 44.1 2.03 27.2 0.48 19910
20 1.62 32.6 1.62 20.6 0.51 15890
15 1.35 25.4 1.35 17.0 0.53 13240

Table 1 — Quantities referred to the spectra of Figures 1 and 2.
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An examination of the figures and table leads to the following observations.
The zero-th moments of the frequency spectra are correctly equal to those
of the spatial spectra.

The zero-th moments, the energy densities and the maxima of the spectra
decrease as the depths decrease; in particular, for the conditions taken
into account, the decreases of the zero-th moments and energy densities
can reach ~50% and that of the maxima ~60%.

The maxima of the spatial spectra shift towards higher wave numbers as
the depths decrease whereas the maxima of the frequency spectra occur
for frequencies very close to fy=f,, despite the presence of the Ep and
x functions in Eq.(29); thus, the frequency f;, actually keeps the meaning
of peak frequency whatever the depth.

The spectral widths increase as the depths decrease; in particular, for the
conditions taken into account the increases of the spectral widths can
reach ~20%.

Bearing in mind the form of Eq.(29), the ratio ESD=ESD/ESDO between
the energy densities on finite depth and on deep water, can be written
’a priori’ as

ED“W’so(ohp-Ao) (36)
involving the dimensionless parameters op, and A,.
A numerical investigation carried out for values of oy, and A4, respectively
ranging from 0.5 to 2.5 and from 0.83 to 5 showed that the dependence
of Ep on A, is much less important than the one on onhp and, consequently,
it can be ignored without appreciably modifying the behaviour of that
ratio. In such a way, Eq. (36) becomes

ED=1P50(°',,;) (37)
which, taking into account Eq. (5), can be written in the very simple
form

ED=X;L65 (38)
obtained by a least-square regression method (goodness coefficient ~0.98).
Besides, Egs. (35) and (38) lead to

HD = X;)O.BZS (39)
Hp=Hp/ Hp, being the ratio between the spectral heights on finite depth
and on deep water, defined as

Hp=4{mqp; Hp =4y mop,. (40)
In the considered range of oy, the decrease of the energy densities and
spectral heights from deep water to the lowest adopted shallow water

condition (0pp=0.5, x=2.1) reaches respectively ~70% and 45%; thus, the
spectral heights are substantially reduced to a half.
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In order to test the predictive capability of Eq. (39), the field data
taken into account by Hughes & Miller [11] are considered. These data
were obtained by the Coastal Engineering Center’s Field Research Facility
located on the Outer Banks at Duck in North Caroline (USA) and they
are given in Figure 3 by Hughes & Miller in terms of the dimensional
parameter Hp/L 075 determined from measurements of wave conditions
at a depth h;=18 m versus its counterpart determined from analogous
measurements at a depth hy=8 m, L, being the peak length. In the same
figure the dashed area, which contains the representative points of the
results deduced from Eq.(39) in the form

Hp /L7 = (H pp/ LYY (X p2/ X 1) 7" 41)

is plotted; the indexes 1 and 2 indicate quantities evaluated with respect
toh; and hy depths. That area is bounded by the straight lines corresponding
to the adopted extreme peak frequencies f,=0.05 Hz, fp=0.5 Hz and it
is located in the central belt of the region of the experimental data, where
they are in large amount.

The figure clearly shows a very satisfactory mean behaviour of the

aforementioned results, which confirms the global validity of Eqs.(38)
and (39).
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Figure 3 - Dimensional parameter Hp; / Lp;%75 relevant to the depth h;
versus the parameter Hpy/ L;y0-75 relevant to the depth h, (dark circles:
field data; dashed area: suggested model).
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With reference to the modified TMA model schematically described
in the Introduction, the ratio Ep=Er/Et, between the energy densities
on finite depth and on deep water formally keeps the dependence (37),
ie.

E'r"‘«pg'r(oup)- (42)

The function ygt, like the function Ygp in Eq.(37), can be written in
terms of xp, as already shown by Scarsi et al., and it turns out

Er=x;" (43)

which leads to

HT___X;LOO (44)

ﬁ»ﬁ-‘HT/HTo being the ratio between the corresponding spectral heights
on finite depth and on deep water.
Eqgs. (38),(43) and Eqgs. (39),(44) supply the following relationships

Ep/Er=x%%;  Hy/H =% (45)

which show that the energy densities and the spectral heights obtained
by the Donelan et al. spectrum in shoaling water diminish, with respect
to the values on deep water, less than the ones obtained by the modified
TMA model, taking into account that Xp=l. In particular, the ratios (45)
increase as the dimensionless depth oy, decreases reaching the values
Ep/E1~1.30 and Hp/Hp1~1.14 in the lowest adopted shallow water
condition.

SOME CONSIDERATIONS ABOUT THE NON-LINEARITIES

The Donelan et al. spectrum Sp(f,h) in shoaling water keeps a single
peak whatever the depth, as happens for the original and modified TMA4
spectra.

In general, observations and theories support the occurrence of a secondary
peak in the region close to 2f, but its presence becomes energetically
important only when the non-linearities play a significant role, essentially
because of the decrease in depth.

To analyse the non-linearities which arise from the Sp(f,h) spectra, an
investigation to the second order was carried out. Attention was focused
on the ratio 3?p=02,,p/02, p, where o2, is the variance of the 1st order
component n;p (Gaussian component) of the surface elevation np and
o2pp is the variance of the relevant 2nd order component 5,p, noting
that the aforementioned ratio corresponds to the one between the energy
densities.
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The evaluation of ¥2p was made by following this procedure: the model
suggested by Tayfun & Lo for deep water, unidirectional waves,
narrow-band spectra was adjusted for its use on finite depths too; the
model so obtained was specified starting from the Gaussian components
n1p constructed, in the time ¢ domain, through linear numerical simulations
of sea states corresponding to the Sp(f,h) spectra on different depths;
after this specification, the non-linear components n,p became available
and the variances o2, p and 02,pp could be calculated.

It is worth noting that the numerical simulations were carried out by a
single summation model already adopted and appropriately tested by the
authors (Rebaudengo Landd et al. [12]).

Following the Tayfun & Lo model, the 2nd order components n;p,
of the surface elevations np, on deep water can be expressed by

N2po = (Ak e/ 2)c0s(20,) (46)

which becomes operative when the corresponding Gaussian components
N1po are known. In fact, the wave amplitudes @, and the wave phases 8,
are given by
2 - -

Y% 0,=tan ™ (M10/M100) (47)
where fj1p, is the Hilbert transform of n;p,. Besides, the spectral mean
wave numbers k., are provided by Eq.(20) specified with the spectral
mean frequency f,,, which is supplied by

a,= (n?Do."ﬁ?Da)

fmo=mlDa/mODo‘ (48)
Taking into account Eqs.(47), n;p, can also be written in the form
MNipo = a,cos(0,) (49)

which associated with Eq. (46), allows np, to be expressed as
TNpo = @, C08(0,)+ (ajkp,/2)cos(26,) (S0)

which is in line with the Rice-Dugundji representation of the wave
envelope, giving extremal values that differ from those of the envelope
for quantities of the e;p,2 order.

Eq.(50) is consistent with the second order Stokes expansion on deep
water and it can be extended to the finite depths & after an appropriate
adjustment, according to the form of that expansion on these depths. The

adjustment allows the surface elevations np on the depths 4 to be expressed
as

N, =acos(8)+ Ch(k,h)[[2+ Ch(2k,h)]/4Sh®(k, h)]a’k, cos(20) (S1)

where the wave amplitudes @, the wave phases ® and the spectral mean
wave numbers k;, are obtained starting from Eq.(4) and Eqs.(47),(48)
specified by the n;p components and the mgp and m;p moments relevant
to the finite depths.
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The investigation performed to evaluate the 52p ratio was based on
Eq.(51) after constructing, by numerical simulations, the discrete time
histories of the Gaussian components np of sea states related to the
Sp(f;h) spectra. These where characterized by the value of the
dimensionless parameters op, and A4, ranging respectively from 0.5 to 2.5
and from 0.83 to 5, as already assumed.

The obtained results lie in the region of Figure 4 bounded by the curves
corresponding to A4,=0.83 and to A4,=5. The figure shows that the &2p
ratio increases as oy, decreases and 4, increases, the dependence on these
parameters being of the same order of importance. The drawn behaviour
means that the energy of the 2nd order components np, and thus the
non-linearities, are not negligible on shallow water for o, which become
lower and lower by increasing A4, and consequently by increasing the
wind velocity U in comparison with the spectral phase velocity c,, on
deep water. For example, assuming 32p=0.05 as threshold which not to
be exceeded in order to keep the linear assumption appropriate, the range
of oy is reduced by increasing A,, like the dashed straight line in the
figure shows. In particular, for 4,=0.83 that range starts at o,,~0.65
whereas for 4,=5 it starts at op;~0.90.

Obviously, the curves plotted in the figure and the quantitative indications
given above must be considered within the limits of both the hypotheses
of the Tayfun & Lo model and the simplified way followed to obtain
Eq.(51).

Figure 5 shows partial time histories of the Gaussian component n;p and
2nd order component n,p of the surface elevations np relevant to a depth
h=14.8 m and a Sp(f,h) spectrum characterized by a peak frequency
fp=0.0648 Hz and a wind velocity U=20 m/s, which give 4,=0.83 and
onp=0.5. The figure indicates that the second component, which is very
important in the situation considered, vertically skews the wave profile
giving rise to sharper higher crests and more rounded flatter troughs, as
the crosses clearly evidence. This fact leads to a probability density
function of the surface elevation which can appreciably deviate from the
Gaussian one.

CONCLUSIONS

Following the procedure already adopted by the authors to rederive the
TMA spectrum, a model able to give the Donelan et al. frequency spectrum
on shoaling water is suggested.

This spectrum (Eq.29) correctly verifies (Eqs.21,25) the self-similarity
hypothesis introduced by Kitaigoroskii et al. in the space of the wave
numbers and, in decreasing depths, it leads to the following behaviours:
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Figure 4 - Ratio 52p=0?,yp/0?, p versus the dimensionless depth oy,
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Figure 5 - Time histories of the Gaussian and 2nd order components
(continuous lines) relevant to the surface elevation (crosses).

the spectral maximum, the energy density, the spectral height decrease
and the spectral width increases (Table 1); the ratio between the local
energy density and the one on deep water, and the ratio between the
corresponding spectral heights can be expressed in very simple forms
(Eqs.38,39) - satisfactorily tested with field data (Figure 3) - involving
a function that depends on a dimensionless depth parameter only (Eq.6);
the local energy density and the spectral height are greater (Eqs.45) than
those obtained from the rederived TMA4 spectrum (Eq.11).
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The suggested spectrum keeps a single peak whatever the depth and it
can be adopted until the non-linearities, which give rise to a secondary
peak, play a significant role. To understand when this occurs, a simplified
scheme based on the Tayfun & Lo model was adopted, focusing the
attention on the ratio between the variances of the 2nd order component
and the Gaussian component relevant to the surface elevation (Eq.51) and
carrying out numerical simulations of several sea states in order to calculate
that ratio. The results deduced allow some quantitative evaluations to be
supplied, especially for the ranges of the dimensionless depth where the
proposed linear model can indicatively be used.
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ABSTRACT

The breakwater gap wave diffraction problem is investigated by
employing a system of first order partial differential equations
equivalent to Berkhoff’s mild slope equation which describes the
combined diffraction-refraction phenomena in shoaling waters.
This system of equations has been previously solved by a finite
difference technique (see Copeland [5]) but in this work, an
explicit characteristics scheme is employed for the solution
running over a non-staggered grid of points. The scheme is
compared with a number of analytical and numerical solutions and
through this comparison, it is proven to be a reliable means for
practical calculations given that its average error remains at a
5% level.

INTRODUCTION

Harbour entrances are very commonly constructed by the
protrusion into the sea of two breakwater arms allowing the
formation between themselves of a gap of certain width. In such
a case, the shelter afforded by the harbour depends on the wave
diffraction patterns inside the harbour introduced by the
impinging waves as these are passing through the gap.

The mathematical description of these breakwater gap wave
diffraction patterns inside a harbour is a difficult problem and
numerous attempts have been made in the past at its solution.
Some date as far back as 1932 like, for example, the one by Lamb
[9] for the case of a small gap width B in comparison with the
wavelength L. However, the solutions most often used in civil
engineering practice are those provided by Penny and Price [13]
and Carr and Stelzriede [3}. The  former have applied
Sommerfeld’s theory on the diffraction of 1light waves in the
case of water waves, while the latter a solution by Morse and
Rubenstein [12] for the diffraction of sound and electromagnetic
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waves by a slit in an infinite plane. Johnson [8] has
incorporated these two solutions in generalised wave diffraction
diagrams which are the well-known diagrams included in CERC [4].

Berkhoff [1] has developed the so-called "mild slope”
equation for the description of this kind of problem which has
found wide practical use. Bettess and Zienkiewicz [2] have
provided a numerical solution to this equation by using finite
and infinite elements ,while Copeland [5] has given an explicit
finite difference solution to a hyperbolic approximation of the
equation.

The "“mild-slope" equation is an elliptic-type equation
posing a boundary value problem which requires for its solution
a large amount of computational work, even for coastal areas of
a limited extent. This shortcoming has prompted the development
in recent years, of parabolic approximations to the equation
which have the advantage of drastically reducing the necessary
computations by excluding the reflected waves from the solution
(see e.g. Radder[14], Southgate[15] etc.). According to
Copeland[5], the number of operations required for the solution
of the elliptic version of the mild-slope equation is M where M
is the number of the grid points describing the wave field the
number of operations required for the parabolic versiona M2 and
the equivalent number for the hyperbolic one equal to M . It can
be seen, therefore, that the hyperbolic approximation to the
equation constitutes an intermediate solution whereby the number
of calculations is reduced without it being necessary to exclude
the presence of the reflected wave.

In this paper, we introduce an explicit numerical scheme for
the solution of the hyperbolic form of the equation which is
based on the method of characteristics and uses a non-staggered
grid of solution points.

THE MATHEMATICAL SOLUTION

According to Ito and Tanimoto[7] and Copeland[5], the mild
slope equation decribing wave propagation in the horizontal
plane may be replaced by a hyperbolic system of first order
equations in the following way:

aZ 1 aaq 1 ap - )

3t + T Fx + T Fy 0 (Continuity Equation)

aa az .

5?-+ C Cg Ix 0 (Momentum Equations) (1)
ap a

It + C Cg a—y =0
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where Cg = n.C, P=n.p, @=n.qg and n = shoaling number, ie

-1 2kh
ns 3 st ) )

The quantities p,q are the velocity integrals over the depth,
ie

p =°J1L dz and q =ifv. dz (3)
These may be further w:;tten as "
p =n. U.hand g =n. V.h (4)
where
. 1 ° - 1 °
U= —F_h_ru. dz and V = ——h-_hfv. dz (5)

are the mean velocities in the vertical.

Under these conditions and accounting only for linear waves
propagating over mild slopes of the sea bed, the system of
Equations (1) takes the form

ag éh éh _ au av

a—t*”zi;”’a‘;"h[a—x 3,7]

au . ¢ ez 6)
at =  h ax (
oav _ _¢f &

at h ay

where Z = n.Z , U =n.Uand V = n.V.

For shallow water waves, it will be ¢? - gh and therefore,
Equations (6) become identical with the equations describing the
propagation of tidal waves under linear conditions. A multitude
of numerical techniques have been applied for the integration in
time and space of these equations (e.g. explicit or implicit
finite difference, ADI, finite element techniques etc.) and it
is obvious, therefore, that these can be equally applied for the
integration of Equations (é) describing the propagation of wind-
generated waves. The application of a characteristics technique
for the solution of system (6) 1is demonstrated in the next
section. The technique has been already tested and successfully
validated in a previous paper where tidal wave propagation is
simulated (Matsoukis [11]).

THE METHOD OF CHARACTERISTICS
The method of characteristics has the advantage of transforming

the initial system of partial differential equations to an
equivalent set of equations (the ‘“characteristic conditions)
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which contain only total derivatives and are valid only along
specific lines, the so-called ‘“characteristic 1lines" or
"bicharacteristics". In the (x,y,t) domain, these can be proven
to be the generators of a conoid defined 1locally by the
following equations (see Dauber and Graffe [6]) :

Q
X
Q

=U+Ccoscoand—%=v+05in<o (7)

Q
-

where ¢ = parametric angle which is measured anticlockwise and
defines the space-time direction of each generator (Fig. 1).

+ SOLUTION TIME (k.1).At

- Ax

Ay

i+l ]

PLANE k.At

i, -1
figure 1. Characteristic lines and intersection points 1 to 5.

It may be proven that along these generators, the following
"characteristic" condition holds true:

, dZ du 3 dv _
gﬁ+Ccoscpﬁ+Csmmdt-f (8)

where g’ = Cz/h and

- g oh , 016 sine 2D
f—choswa—X+ngHm 3y

2 au . 2 au ay . ay 2
_C[Wsu‘q,-(a—y+a—x)s1mcosw+ay cosm]

Also, the trajectory followed by an individual water
particle is proven to be a characteristic 1line (the so-called
"particle path" line) defined by
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dx _ dy _
-a—t-UandE-E-V (9)
The corresponding characteristic condition is as follows:
dz _ au ay
‘a“t'“[a';*ay] (10)

It can be seen that this is in fact identical with the first
of Equations (7) (ie the continuity equation), if its terms are
re-arranged and therefore, it is not a characteritic condition
in the strict sense.

THE NUMERICAL SCHEME

The field of application of the equations is divided to a
network of solution points by considering straight lines running
parallel to the two axes x and y at distances Ax and Ay
,respectively. The unknown values of ¢, U and V at a certain
time (k+1).At are all calculated simultaneously at every point
of the grid by using known values of the variables at the
previous time level k.At. In this way, an explicit technique is
introduced for the solution running over a non-staggered grid.

Accuracy and numerical stability considerations have shouwn
(Matsoukis[10]) that the computational algorithm must be
established by considering the characteristic conditions (8)
along four bicharacteristics corresponding at values of ¢ equal
to 5n /4,7 /4, n/4 and 37 /4 and the characteristic condition (10)
along the particle path line (9). Accordingly, it is (see Fig.
1):

Characteristic No 1 (v = 51 /4)

47 ¢ Y24y Y2dv _ _ Y20h _ Y20h
dt g’ 2 dt g’ 2 dt 2 3x 2 8y

1 ¢l ravu_au_av av

2 g’ ax 3y ax 3y

dz , € ¥2du ¢ ¥2dv _ . ¥2dh . ¥23h
dt g’ 2 dt g’ 2 dt 2 dx 2 3y
_1 ¢ rav ou ov ov
2 g’ ax a3y ax oy
Characteristic No 3 (v = m/4) (11)
4z, © Y24u, © Y24V _ . Y28h, Y2 3h
dt g’ 2 dt g’ 2 dt 2 9x 2 8y
_1 ¢®fou_ou_av, av
2 g’ ax 3y ax 3y

"
W
=]

S~
F-N
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Characteristic No 4 (o
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dz ¢ ¥2 du ¢ ¥2 dv _ Y2 8h ¥2 &h

= c X2, o X2

dt g’ 2 dt g’ 2 dt 7 Fx 2 ay
1 ¢ [au au  av av]
- = -5 +
2 g

ax *ay tax tay

The numerical solution is established by approximating the
total derivatives on the left hand side by forward in time
finite differences and, therefore, the conditions above may be
written as follows:

z-21 ¢ vYZ u-u1 C_Y2v-vi_ Y2 dh ¥2 éh

At g’ 2 At g’ 2 At ° 2 9x 2 dy
1 rau_su_av av
2 g’ ax dy ax a8y
Z2-22 + ¢ Q u-u2 - c Q vV-v2 = C 12_ éﬂ - Zg. _a_b_
At g’ 2 At g’ 2 At 2 ax 2 8y
_L efrau, au av oy
2 7 ax dy ax 8y
Z2-23 ¢ vY2 u-u3 C Y2 v-V3 _ Y2 ah Y2 ah
2t ' T97 2 At ' 9 2 At - "2 t*C 3y (12)
1 ¢t revu_ou_av, av
2 g’ ax dy @x ady
2-24 . ¢ Y2U-U4, C YIV-VA_  ¥23h ,  ¥23h
At g’ 2 At g’ 2 At 29 2 3y
21 ¢ fau ou oy av
2 g’ ax @8y dx y
2-25 auy . av ) .
—Tﬁ:—=—h [-a—x+5—y] (particle path line)

where Z, U and V the values of the unknown variables at the apex
of the conoid ie at the time level of solution (k+1).At and
Z21,U1,v1,22,U2,v2 etc. the wvalues of 2,U and V at the
intermediate points 1 to 5 at the previous time 1level k.At.
These are defined as the intersection of the bicharacteristics
with the time plane k.At (Fig. 1) and, therefore, their

coordinates Xoo Yoo X0 Y, etc. are as follows:

x5=—U.At , y5=—V.At and

- Y2 _ ¥2
xiz-xsic——z-At Y -y :':C-—:—zAt (13)
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At yz‘=y5t0£§At

The quantities U,V and C in Equations (13) above and also
the partial derivatives on the right hand side of Equations (12)
are all calculated at k.At at the point of solution 0(iAx, jAy).

By combining Equations (13) , we have

7 = R1+R2;R3+R4 - 25
2
- R2+R3-R1-R4 C ah
Uu=+v2g TS P 3y At (14)
2
- R3+R4-R1-R2 c 2h
vV=v2g ac = a——y—At
where R1 = 21 - -jo ]C; Ul - —jif Icz Vi
g 2 g 2
_ c 2 ¢ 72
R2‘Z2+—§'7""2‘02- g,—2V2
_ c v2 c ¥2
R4=Z4-———C—,QU4+—-9—,—QV4
g 2 g 2

are the so-called Riemann invariants.

The value of any variable at the intermediate points 1 to 5
is approximated by means of an interpolating scheme which takes
the form of a polynomial following Taylor’s formula up to a
second order of accuracy, ie

_ 2 2
Qx’y = O.L”i + X LX(O) + 0.5 x Lxx(O) +y Ly(Q) + 0.5y Lyy(Q)
+ xy ny(Q) (16)

where Q stands for any quantity involved in the solution and Lx,

L ,L ,L etc. are finite difference operators in the
y’? xx’ vy

following way:

S,y T, BT R T A O
Lx(ﬂ)- 2 AX ’Lxx(o)- etc.

As a result, the final solution given by (14) above is
finally expressed in terms of the values of the variables not at
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the intermediate points 1 to 5 but only at the grid points. 1In
practical applications, it is usually taken Ax = Ay = As and so,
the numerical solution of elevation  and mean velocities U and
V at a grid point 0(iAs, jAs) and at time 1level (k+1).At ie

k+1 +1 Je+1
<, Ut and v , becomes
k+1 k

2,.2 k k
gk 405 oAl L@ ) e L, @)

i L

< k < k
- u‘:J At L (h ) - V<At L, ()

(9]

k 3
-h AL (U ) -h o AEL (U )

’

TR T T [L Wy s Lk .)] (17)
i, ) XX ©oL,) YY)
2
INR
N . x L’J
t ,J

+1
Y

-<:v

+ 0.5 C*At? [L AR A .))
XX L, Yy 1,

CZ

k
at L &)

i,

This solution scheme is restricted by the following CFL
condition for stability

c At < ZZ (18)

As 2

Two kinds of boundary points may be recognized within the
model area:those lying along an impermeable barrier (e.g. quay
wall), ie the so-called "closed" boundary points and those lying
along a line connecting the model with the open sea, ie the
so-called “"open" boundary points. At closed boundary points, the
velocity directed at right angles to the boundary line is taken
as zero. At the open boundary points, the amplitude of the
incident wave is usually prescribed as a sinusoidal function of
time , while the amplitude of the outgoing wave is calculated by
the model itself using the bicharacteristics lying only in the
interior of the model.

MODEL APPLICATIONS

To test the validity of the model, four different cases of
breakwater gap width to wavelength are examined , ie B/L = 0.5,
1.0, 1.41 and 1.64 and the resulting diffraction coefficients
isolines are compared with those provided by the generalised
diffraction diagrams in CERC.
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Waves travelling over a water depth of h = 15m are
considered with a tidal period of T = lésecs, an amplitude of
0.5m and a 90" angle of incidence to the breakwater gap axial
line. Preliminary tests have shown that the method of solution
developed above (Equations (17)), depends strongly on the number
of grid points per wavelength and in this respect, around 40
points per wavelength has been found to be a more than adequate
number to ensure a high level of accuracy. Due to the symmetry
of solution , only half of the wave field needs to be considered
in practical applications (see Fig. 2, 3, 4 and 5). A suitable
number of iterations is also selected, so that the wave front
does not reach the limit of the internal boundaries. In the
opposite case, unwanted reflections will take place along the
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Figure 2. Isolines of diffraction coefficients. Ratio B/L:0.5
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Figure 3. Isolines of diffraction coefficients. Ratio B/L = 1.0
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Figure 4. Isolines of diffraction coefficients.Ratio B/L = 1.41
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Figure 5. Isolines of diffraction coefficients.Ratio 8/L - 1.64

boundaries which are bound to contaminate the solution

interior of the model. During the
scheme, wave amplitude maxima and minima are stored at each grid
point which are then used to calculate wave heights and also,
wave diffraction coefficients.Depending on the size of the grid,
the required CPU time is of the level of 1 to 2 minutes on a
micro VAXII computing system.

running of

in
the explicit
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By comparing the isolines of diffraction coefficients
produced by the model inside the harbour with those provided by
the generalised diffraction diagrams for the selected ratios of
B/L, the following table can be formed.

Table 1. Average percent(%) error per isoline

Ratio B/L Isoline
1.0 |0.8 |0.7 0.6 {0.5 (0.4 |0.3 |0.2
0.5 4.9 5.1 (4.2 |4.1
1.0 3.1 |2.6 3.1 (2.2 |1.7 |5.2
1.41 7.3 |2.7 3.4 1.5 1.5
1.64 2.3 |3.8 2.6 7.0

Under these conditions, it becomes obvious that the average
error of the numerical solution 1lies at a 5% 1level and,
therefore, we can safely conclude that the characteristics
technique 1is indeed a reliable alternative for practical
applications of civil engineering importance.
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following symbols are used in this paper:

= wave celerity

= wave group celerity

b
~
H

space increments along x- and y- axis
= time increment
= mean water depth relative to a certain datum
= water elevation relative to a certain datum
,k = integers
= shoaling number
= depth mean velocities along x-~ and y- axis
= time variable
= cartesian coordinates

= h+{ = total water depth
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ABSTRACT

When gravity waves interact with porous media, a significant portion
of the kinetic energy is dissipated inside the pores due to turbulence and
friction. It is important to estimate such energy loss when designing porous
ocean structures, such as rubble-mound breakwaters in which the wave en-
ergy dissipation is usually the major goal. In this paper, the energy dissi-
pation process is numerically modeled with the Boundary Integral Element
Method (BIEM). To apply the BIEM efficiently, a boundary integral formu-
lation for the wave energy dissipation has been developed, based on energy-
flux deficit concept, to replace the commonly used volumetric expression
(Sulisz [7], Madsen [5], and Sollitt et al.[6]).

The numerical model, which combines BIEM, the nonlinear-unsteady
porous flow model and the boundary integral formula of wave energy dis-
sipation, is capable of simulating the complex interaction process of waves
with porous media of complex geometry for the full range of permeability.
Compared to the conventional volumetric formulation, the boundary inte-
gral formulation for the energy dissipation is proved to be a very efficient

when applied with the BIEM.

INTRODUCTION

When surface gravity waves interact with porous media, such as rubble-
mound breakwaters or gravel islands, a significant amount of the wave en-
ergy is being dissipated within the media due to turbulence and friction.
The computation of this energy dissipation is important in the design of
rubble-mound breakwaters.

Due to high permeability of rubble-mound structures, the dissipation
process is highly nonlinear; also the inertial resistance becomes significant

1Rormerly with Coastal and Oceanographic Engineering Dept. University of Florida
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when the flow is unsteady. The porous flow of such kind must be modeled by
a nonlinear-unsteady percolation model such as the one proposed by Sollitt
and Cross [6]. Due to the difficulty of solving the nonlinear problem directly,
the nonlinear formulation is usually linearized to obtain an equivalent linear
resistance coefficient, based on the principle of equal energy dissipation.
Such a technique has been successfully employed by many investigators such
as Sollitt, et al.[6], Madsen [5], Sulisz [7] and others when modeling porous
ocean structures. However, in their models, the expression of the energy
dissipation is in the form of a volumetric integration which is awkward
and leads to tedious and needless computations when boundary element
method is used. Since the linearization process accounts for a large portion
of the total computational effort in the solution of a nonlinear problem, a
more efficient method for evaluating the wave energy dissipation is highly
desirable.

NONLINEAR-UNSTEADY PERCOLATION MODEL

For porous media made of rubble stones, the porous flow can be de-

scribed by (see Wang and Gu [8], Gu and Wang (3], Sollitt and Cross [6])

1 v Cy . .
__vp(z’yvz»t) = (1—,—20ﬂ+——-‘f— ’q(zayazat) I)q(m,y,z,t) (1)
p {p K,

o(fi + f214]) q (2)

where
P(z,y,z,t) is the pore pressure function;
v and p are the kinematic viscosity and fluid density, respectively;

K, is the intrinsic permeability of porous media; it is related to particle
diameter by (Engelund [4])

2
K, = _ ndy (3)

ao (1 —n)3
where
ao is an empirical constant and
n is volumetric porosity;
o is wave frequency;
[ is the inertial resistance parameter defined as

n+ Cy(l —n)

n2

18=

C, is the virtual mass coefficient;
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Cy is a non-dimensional constant which characterizes the nonlinear resis-
tance and

f1 and f; are two complex coefficients introduced for simplicity. The defi-
nitions of them are straightforward from the equation;

4(z,y,2,t) is the complex vector of discharge velocity in the porous medium,
the real velocity vector is

cj’(w, Y2, t) = Re((f(w, Y, 2, t))

Introducing a non-dimensional parameter called the intrinsic permeabil-
ity parameter, defined as R = 0K, /v, Eq.(1) becomes

1 1o _
“;VP(I,y,Z,t)—U(R—Zﬂ+\/J—VRIQ(%%ZJ)‘)Q(x,y,zvt) (4)

BOUNDARY INTEGRAL FORMULATION OF THE
ENERGY DISSIPATION

The conventional formulation for the wave energy dissipation ep within
a volume V of a porous medium during the time period T is (Sollitt et al.[6],
Madsen [5], and Sulisz [7])

ep = /V /t TTE . pgdt dv (5)

where F', which is a function of spatial coordinates and time, is the dissipa-
tive stress in the medium and § is the discharge velocity of the porous flow.

Here both F' and § are real quantities.
With the nonlinear percolation model Eq.(1), the dissipative stress is
defined as the real part of the quantity in the brackets:

.G
K, Ky

The inertial term in Eq.(1), i04¢, which is a pure imaginary number in
this case, is a non-dissipative stress and therefore will not contribute to the
energy dissipation process.

The volumetric integration in Eq.(5) is usually difficult to carry out and
in many cases, approximations must be made to simplify the integrand.
However, if the wave energy dissipation can be expressed as a contour inte-
gration along the boundary of the computational domain, the calculation of
energy dissipation will be considerably simplified, especially for a boundary
element solution where P or ¢ are usually well specified along the bound-
aries. As a matter of fact, such an expression can be easily obtained by the
use of a control volume and the Green’s theorem.

For simplicity, we consider only two dimensional problems in the z — z
plane. We define U and W to be the discharge velocities (real quantities)
in the z and z directions, respectively, and €p to be the rate of energy
dissipation per unit volume (also a real quantity, considered as a positive

| §1q (6)
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value). The rate of total energy dissipation in an arbitrarily small cube of
dz -1 -dz can be expressed as

ovu ow OP, W(?P,

e = —(Pgrt B +UG-+WHo) (7)
0 0
= —[5-(UP)+ 5(WPR)] (8)

with P, being the real part of the complex pore pressure function.

By applying the continuity condition of pore fluid and the nonlinear
percolation model given in Eq.(1) to Eq.(7), it can be readily proven that
Eq.(8) is just an alternate expression of the integrand in Eq.(5) (see Gu [2]).

The total energy dissipation within the entire computational domain
during a time period T is then

ep = //A/tHTEDdtdxdz
- - /t”T I/ [(%(UP,) + %(WPT)] dz dz dt )

where A is the total area of a computational domain, such as the cross
sectional area of a submerged breakwater.

Eq.(9) is an equivalent expression to Eq.(5) for the energy dissipation
in a porous medium. The only difference between the two is that the non-
dissipative resistance io3¢ is included in Eq.(9) but not in Eq.(5). The
inclusion of this term should not affect the value of ep because of the non-
dissipative nature of this resistance.

Applying the Green’s theorem to Eq.(9), which converts an aerial inte-
gration into a contour integration, the energy dissipation within the area
bounded by S during a time period T becomes

—— [ pU.dsar (10)
L4

The above equation simply states that the volumetric energy dissipation
in the time period T is equal to the net energy flux across the boundary
enclosing the volume in the same period; i.e., the physical principle of energy
conservation.

Expressed in terms of complex variables, Eq. (10) becomes

_ 1T 2i0t *
Ep = —5./t f(pune + u,p*) dsdt (11)
with
Unr = Re(uy) (12)
pr = Re(p) (13)
ep = Re(Ep) (14)

where u,,, p, and ep are real velocity, pressure and energy dissipation,
respectively.
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For linear wave problems, it is convenient to chose T as the wave period.
The integration of the first term of Eq.(11) with respect to time vanishes,
and the complex energy dissipation is reduced to

T
Ep = ~3 upp*ds (15)

LINEARIZATION

The linearization of the nonlinear formulation of Eq.(1) is accomplished by
equating the energy dissipation by the linearized system to that by the true

nonlinear system.
For the nonlinear system,

1

o = e T 1o

and . Y
? DPnp

Ep) = - — s 17

o)t =3 Jo v 72140 (1"

where C is the portion of the closed boundary of porous domain where u,
is nonzero.
For the linearized system,

1 dp 1

(un)r = Toofodn —mpn (18)

and

(Ep) = ;z/cpnp* ds (19)

with fo being the linearized (or equivalent) resistance coefficient, an un-

known for the problem.
Equating (Ep); to (Ep). and taking approximately | §|~|p./pofo|, the
linearized coefficient f, is then

/ pnp"ds
fo= < (20)

/ jy ds
c fi+ falpa/pofol

This is an implicit equation of fy, the solution of the problem is achieved
by iteration, starting with an initial guess of f;. Since it involves contour
integrals instead of volumetric integrals, Eq.(20) is much more efficient than
its conventional counter part.
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BOUNDARY INTEGRAL ELEMENT FORMULATION
AND NUMERICAL MODEL

In the BIEM numerical model, the velocity potential function ® in the
fluid domain D, bounded by a closed contour C; and the pore pressure

function P in a porous domain D, bounded by C, can be expressed by the
following two equations, respectively

ad(xg) = fCI[Q(x)g—f(xo,x)—g—i(x)G(xo,x)]ds (21)

aP(xo) = § [POOGE00 %) — S 0G0 XN (22)

where G(xo,x) is a free space Green’s function and « is a coefficient de-
pending on the position of the point xg, (it is 2r when X is an interior
point, and the inner angle of the boundary when it is a boundary point);
Xg is a point in the domain of D;NC; or D,NC; and x is a boundary point
on C; or Cj.

The free space Green’s function is
G(x0,x) =1Inr (23)

where r is the distance between x and xo and it is

r= \/(:v—:co)2+(z—zo)2

on the z — z plane.

The boundary conditions used for the problem are: the linearized free
surface condition on the free surface, the radiation condition on the two
vertical lateral boundaries and the non-flux condition on the seabed. The
boundary conditions on the common portion of Cy and (), i.e., the interface
of the fluid and porous domains, are established based on the continuity of
velocity and pressure.

Discretizing the boundaries C; and C; and carrying out the contour
integration over each boundary segment, Eqs.(21) and (22) give rise to two
sets of linear algebraic equations. Solving these equations simultaneously
together with the boundary conditions, the unknowns @, %, P and %

can be obtained along the boundaries C; and C, on a discretized basis (Gu
[2]), if the linearized resistance coefficient f,, which is introduced into the
computation through the matching condition along the breakwater surface,
is known.

The equation for f, is given by eq.(20) and is solved by iterating the
solution process with a guessed initial value. For details of the numerical
model, readers are referred to Gu [2].

NUMERICAL EXAMPLES

The numerical model described above is applied to a porous submerged
breakwater of model scale. The geometric parameters of the breakwater
are: 15 cm high, 60 cm wide at the crest with slope 1:1.5. The stone size
d = 0.93 cm and the porosity n = 0.349. The mean water level is 23 cm
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above the bottom and 8 cm above the breakwater crest. The parameters
adopted in the numerical model are: ap = 570, Cy = 1.0 and C, = 0.46 (Gu
and Wang [3]).

The wave transmission and reflection coefficients K7 and K calculated
by the numerical model for different wave periods due to percolation are
plotted in Fig. 1(a) and (b) against the intrinsic permeability parameter R
(log1oR). The energy dissipation ep can be obtained by

2
ep = (1— K% — K;)lg’L

It is interesting to note the existence of the minima of Kt (therefore
the maxima of ep). Such maximum energy dissipation was found to occur
at a permeability where the dissipative resistance (velocity related) equals
to the non-dissipative resistance (acceleration related). The magnitude of
the maximum energy dissipation rate is slightly affected by wave period.
Utilizing the relationship between permeability and particle diameter de-
scribed in Eq.(3), the range of stone size where maximum ep’s will occur
ge;n %e established to aid design of structures such as breakwaters and gravel
islands.

Experiments were conducted in a wave tank at University of Florida on
a model of same configuration to verify the numerical model. Figure 2 and
3 show the transmitted and reflected wave heights versus the incident wave
heights. The continuous curves are the numerical results. The incident
wave height at which breaking waves were observed is marked in the figure
as the breaking point. For wave heights smaller than the breaking height,
the energy dissipation is solely due to percolation and the numerical model
and physical model agree well in this range. After breaking point, the
energy dissipation by the physical model is significantly greater than that
calculated by the numerical model. This is because the energy dissipation
of the physical model contains the portion due to breaking which is not
considered in the numerical model. The difference between the numerical
results and the experimental data, however, can be viewed as the dissipation
attributed to breaking.

CONCLUDING REMARKS

1. With the formulation of boundary integration, the computation of
wave energy dissipation due to nonlinear percolation can be considerably
simplified. The linearization process using this expression becomes much
simpler and much more efficient, as compared to that of using the conven-
tional volumetric integration.

2. The rate of wave energy dissipation due to nonlinear percolation,
when plotted against the intrinsic permeability parameter R, has a well de-
fined peak for each wave period. These maxima occur when the dissipative
resistance (velocity related ) in the porous structure is equal to the non-
dissipative resistance (acceleration related). The magnitudes of the peak
energy damping are slightly different for different periods.

3. The numerical model results compare well with the laboratory data
for non-breaking waves. Work is being continued to include the energy
dissipation due to wave breaking into the model.
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Figure 1: Predicted transmission and reflection coefficients vs. R for differ-
ent wave periods. (a) Transmission coefficient K7; (b) Reflection coefficient

Kg
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Figure 2: Comparison of predictions and measurements of transmitted and
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ABSTRACT

The present study is concerned with numerical and
experimental investigations on wave diffraction
around bottom-fixed, surface-piercing, rigid,
vertical, three-cylinder group of large diameter
situated in constant water depth. The numerical
analysis is based on the first order diffraction
theory. Numerical solutions of the complex velocity
potential and associated wave hydro-dynamic forces
are obtained using two-dimensional finite elements in
the inner domain in combination with infinite
elements in the outer domain which directly satisfy
the radiation condition. The assembly and solution of
the finite element equations are based on the frontal
scheme due to Irons (1). Extensive numerical results
of wave forces have been obtained for the three
cylinder group for various scattering parameters,
wave angular approaches and spacing parameters.
Experiments have been conducted on model cylinders to
verify the validity of the numerical solutions. The
present FEM results and experimental results have
been compared with the other published analytical
solutions. Due to the interference effect the
increase in force on one cylinder due to the presence
of the other cylinders is also presented.

INTRODUCTION

offshore engineers are concerned with the effects of
diffraction of water waves by large fixed bodies in
the ocean and the resulting diffraction forces and
structural 1loadings exerted by incident waves on
groups of pilings supporting various types of
offshore drilling platforms. Spring and
Monkmeyer (2) obtained a solution for the interaction
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of plane waves with three arbitrary rigid, vertical,
circular cylinders at arbitrary wave angles under the
conditions 1in which the inertial forces on the
cylinders dominate over the drag forces. In this
method a direct matrix solution as well as multiple
scattering are used to obtain the velocity potential
in the vicinity of the cylinders. The resulting
potential function is then applied to calculate force
components in the direction of wave advance and
orthogonal to it. Chakrabarti(3) extended the work by
spring and Monkmeyer and presented analytical results
on the wave forces on a three-legqged and a four-
legged platform. Ohkusu(4) used the method of
multiple scattering in which the full scattered wave
field is determined by considering separately each
scattering event within the cylinder group. McIver
and Evans(5) presented an approximate method for the
estimation of wave forces on groups of fixed vertical
cylinders. The method is based upon a large spacing
approximation and involves replacing scattered
diverging waves by plane waves. In this paper, we
apply the finite element coupled with infinite
element method for the solution of the diffraction of
waterwaves by three-cylinder group.

MATHEMATICAL FORMULATION OF DIFFRACTION PROBLEM

The diffraction of water waves around solid
obstructions such as large offshore structures may be
studied wusing a linear diffraction theory governing
the irrotational motion of an incompressible fluid,
wherein the wave amplitudes are assumed to be small.
Denoting the velocity potential by o (x,y,z,t) and
assuming harmonic waves with frequency w, complex
potential ¢ may be written for the case of constant
water depth as :

® (x,y,2,t) = Re(d(x,y,2) g+ *T) (1)

in which i = /-1 and Re{ } implies that only the
real part of the quantities inside the bracket has
physical meaning. Then the governing equation in
terms of ¢ may be shown to be:

vie=o0 (2)
where V denotes the three dimensional laplace opera-
tor in the Cartesian (x,y,2z) system. At the fluid-
structure interface as well as at the seabed, which
are assumed to be rigid and impermeable, one has:

-—=— =0 on S (3)
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where S is the rigid surface which is assumed to be
stationary and n is normal to the surface S which
includes all solid surfaces. Therefore, only the
scattering problens are discussed herein. In
addition, the free surface boundary condition can be
written as :

3¢ w2¢

———= = ==——— =0 at z =0 (4)
92 9

where g is the acceleration due to gravity. Since the
fluid domain is unbounded in the plan dimensions, the
Sommerfeld radiation boundary condition, which
requires the scattered waves to be outgoing, can be
expressed as

3 s -
Lim r® [ ————— - ikgg| = 0 (5)
r——>00 3 r
where m = (P-1)/2, P being the number of dimensions,
and @ is the scattered wave potential. By

definition, the superposition of scattered waves and
incident waves yields the total wave field. Thus for
linear waves :

¢=$i+$s (6)

For the case of bottom fixed, surface piercing,
prismatic cylinders it can be shown that the solution
of Eg.(2) is of the form :

¢ = Z(2) ¢(x,Y) (7)

iw
n(x,y) = ——=—-- P (x,Y) (7a)

Where ¢ is a two dimensional complex potential and
the depth transfer function Z is given by :

Z(z) = Cosh k(h+z)/Cosh kh (8)

where h is the water depth and k is the wave number
which is related to ®w by the well known 1linear
dispersion relation :

w2 = gk tanh (kh) (9)

In view of the solution in Eq.(7), the diffraction
fornmulation in Egs. (2 to 5) may be replaced by a 2-D
formulation. The Laplace equation in (2) is replaced
by the classical Helmholtz equation:
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_____ + -a—— + k2 ¢ =0 (10)

----- =0 onT (11)

where the curve T denotes the intersection of the
structure and the still water surface. The general
radiation condition in Eq. (5) reduces to

[ 3 g
Lim Jr | ----- - ik¢s] =0 (12)

r==—>0 ar

where ¢4 is scattered part of ¢ [See Eq.(6)]. The
reduced governing Egs. (10 to 12) involving only two
dimensions (x,y) are analytically simpler to handle.

VARIATIONAL FORMULATION AND DISCRETIZATION

The solution of the 2-D diffraction problem in
Egs. (10 to 12) along with the free surface boundary
condition may be solved in closed form for simpler
geometries. However, for cases with multiple
structures and complex dgeometries only numerical
solutions are possible. A numerical method for the
solution of the diffraction problem using finite and
infinite elements has been proposed by Bettess and
Zienkiewicz (6). In this approach the problem domain
is divided into two regions. The first one 1is the
inner domain encompassing the structure which is
essentially the near field region. The remaining far
field is treated as the outer domain. The inner
domain is discretized using finite elements and the
outer domain with infinite elements proposed by
Bettess (7). The infinite elements are formulated
such that they satisfy the radiation condition in
eq. (12). These elements in effect represent the
influence of the far field on the near field
diffracted pattern in a compact manner. In the finite
element analysis over the inner domain the total
potential may be used as the field variable, in which
case the functional for variational formulation turns
out to be :

T = ”ni 5 ((Ve)2 - k2¢2)an- L ¢ (-—--- ) ar (13)
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where 0! denotes a domain in the inner region and
' is the bounding curve. In the outer domain it is
convenient to employ the diffracted potential as the
variable so that the radiation condition may easily
be imposed on the infinite element formulation. Then
the appropriate functional for this domain turns out
to be:

m= JIQO 5 {( V¢s}2 - k2¢sz)dﬂ + § (m==== ¢ dy

i
- = ¢ dx) (14)
3Y
where 0° denotes the domain of an infinite element.

Upon minimising the functionals in Egs. (13) &
(14) defined over a finite or infinite element, as
the case may be, using the Rayleigh Ritz technique
the element equations for both the domains are
obtained. The element property matrices may be
assembled following the standard procedure to get
system equations in the form

|
----- i!--—-- —% = () (15)
|

where (b} denotes the nodal variables in the inner
domain (excluding those at the interface of the inner
and outer domains) and {d} denotes the remaining
nodal variables. The load vector {f} vanishes except
at the interface nodes. The global equations in (15)
are complex and hence complex arithmetic is used for
solution. A computer programme for the above 2-D
diffraction analysis has been developed which
computes wave induced inline and lateral forces on
the individual <cylinders. The programme has been
implemented on IBM 370/155 computer system at Indian
Institute of Technology, Madras. The programme uses
6-noded isoparametric triangqular and 8-noded
isoparametric quadrilateral elements in the inner
domain and 9-noded parametric infinite elements over
the outer domain. A typical element mesh used in the
numerical solution is shown in Fig.1l.

EXPERIMENTAL INVESTIGATIONS

Experiments have been conducted on three-cylinder
model group (Fig.2) in a laboratory wave flume at the
Ocean Engineering Centre, Indian Institute of
Technology, Madras, to verify the validity of the
numerical solutions. In the present analysis the
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A: 6-NODED ISOPARAMETRIC TRIANGULAR ELEMENT
Bz 8-NODED I1SOPARAMETRIC QUADRILATERAL ELEMENT
C= 9-NODED PARAMETRIC INFINITE ELEMENT
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following cases (Table 1) with various geometric and
wave parameters have been considered for experimental
and numerical studies on model cylinders. The water
depth, spacing parameter, scattering parameter and
wave angular approach are varied as shown in table 1
both for experimental and numerical studies where S
is the centre to centre distance between adjacent
cylinders, a 1is the radius of the cylinder and k is
the wave number.

Table 1. Parameters for Experimental and Numerical
Investigation on Model Cylinders.

Case Diameter Water Spacing Range of Direction

of the depth parameter scattering of wave
cylinder parameter propaga-
tion
D (cms) h(cm) S/a ka 0 (deqg)
3 CYL. 20 50&100 4,5 0.1to 0,90 &
group 1.6 180

Inline forces on the individual cylinders and
incident wave heights are measured for the various
parameters. The force measurement is repeated by
varying the space between the c¢ylinders and the
orientation of the cylinder group with respect to the
wave propogation direction.

RESULTS AND DISCUSSION

FEM results for the variation of the force ratio R on
the 1leading cylinder (cyl.3) of the three-cylinder
group for 6=0° and S/a = 4 is compared with the
experimental results in Fig.3, where R is the ratio
of the force on the leading cylinder of the three-
cylinder group to the corresponding force on the
single -cylinder case. Out of the three wave angular
approaches (& = 0°9,90° & 180°) and two spacing
parameters (S/a = 4,5) considered the case with ©=0

and S/a=4 gives the largest increase in force ratio R
= 1.51 and exhibits marked fluctuations between
maximum and minimum values of R with ka. Agreement
between the numerical predictions and experiment is
satisfactory for all the cases considered. The
variation of force ratio R with scattering parameter
ka for the leading cylinder of the three-cylinder
group is shown in Fig.4 for =0° and S/a = 5, which
is typical of some gravity structures. This figure
compares the present FEM results and experimental
results with the approximate analytical solution due
to Spring and Monkmeyer (2) and also with the results
due to McIver and Evans (5). The correlation obtained
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F16.2 THREE -CYLINDER MODEL (9=0°, S/a=5)

1.6 — FEM
O 0 O EXPERIMENT

D =20cm
h =100cm
s/a=z=4

0 0.4 0.8 1.2 1.6 2.0
kQ —-
FI1G6.3 COMPARISON OF NUMERICAL PREDICTIONS WITH
EXPERIMENT SHOWING THE VARIATION OF FORCE
RATIO R WITH ka FOR S/a=4 (3-CYL, CASE)



Computer Modelling for Seas and Coastal Regions 79

among the four methods is generally good. The results
obviously exhibit an oscillating trend of the force
ratio R with respect to ka, R being maximum at
ka = 0.5.

Numerically evaluated maximum inline and
lateral non-dimensional wave forces on large diameter
three-cylinder group are graphically presented in
Figs. 5 to 7 for 6=0°, 90° and 180° respectively for
S/a = 4. In all these cases the results are compared
with the non-dimensional wave force on a 20m diameter
isolated vertical circular cylinder. In Fig.5 it is
observed that the peak inline force on the 1leading
cylinder for 6=0° and S/a=4 is about 42 percent
larger than the peak force experienced by an isolated
cylinder which occurs at different ka values, thus
showing the importance of interference effect brought
about by two trailing cylinders. On the other hand
the two trailing cylinders experiences only 6 percent
increase of force over the isolated cylinder value.
Considering the case with 6=0° and S/a = 5 the
increase of the peak inline force on the 1leading
cylinder is about 34 percent over the isolated
cylinder peak value, the increase being smaller
compared to the case with S/a = 4. Due to the
symmetry of the geometry about x-axis the inline and
lateral forces on the two trailing cylinders are
identical.

For ©=90° and S/a = 4 (Fig.6) the leading
cylinder experiences the highest increase in the
peak inline force of about 31 percent for this case.
For the same case with S/a = 5 the increase 1in the
peak inline force on the leading cylinder is of the
order of only 21 percent. For 6=180° and S/a = 4
(Fig.7) it 1is observed that the increase of peak
force on the two leading cylinders over an isolated
cylinder peak force 1is only about 10 percent.
Apparently the single trailing cylinder has less of
interference effect than in the previous cases with
©=0° and 90°. The peak force on the trailing cylinder
is almost of the same magnitude as that of an
isolated cylinder.

CONCLUSIONS

From the results of this study the following

conclusions are drawn :

i) It is generally observed that the peak horizontal
wave force on an isolated cylinder and on any one
member of a group of cylinders occur at different
ka values over a given range of scattering
parameter ka. For all the cases studied the peak
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ii)

force on the multiple cylinder shifts towards
higher ka value when compared to an isolated
cylinder, in some cases the shift being very
pronounced.

When the spacing parameter S/a for the group of
cylinders is decreased the peak horizontal force
on the leading cylinder increases significantly,
whereas the force on the trailing cylinder is
less sensitive, although marginally larger than
the single cylinder value.

iii)As for the numerical technique used, it has been

iv)

found that, for better accuracy, atleast 3 to 4
elements must span half the wave length.

For the three-cylinder case the increase in force
is most significant when one cylinder is directly
in front of the remaining two cylinders for =0°.
out of the three wave angular approaches (©=0°,
90° & 180°) and two spacing parameters (S/a = 4
and 5) considered, the interference effect is
severe on the leading cylinder of the three-
cylinder case for 6=0° and S/a = 4. For this case
there 1is 51% increase in force on the 1leading
cylinder compared to an isolated cylinder at
ka=0.65 (Fig.3), whereas the increase in peak
force on the leading cylinder when compared to
the peak force on an isolated cylinder is 42%
(Fig.5). This obviously brings out the
predominant interference effect on the three-
cylinder case.
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Wave Breaking over a Submerged Plate -
A Numerical Study
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ABSTRACT

In this work, the performance of a submerged breakwater consisting of
a submerged horizontal plate was investigated, using a numerical model
capable of treating arbitrary free-surface configurations, including
breaking waves. It was found that for the given conditions of incident
waves, breakwater dimensions, and placement, the device has a
hydrodynamic efficiency of 0.75. The mechanisms responsible for this
high efficiency were clearly identified. The computed vertical wave
loading on the structure was much higher than linear estimates
predicted. The results of the present study are part of a research
program on the coastal protection works for the Barcelona 92 Olympic

Marina. Some future developments are also briefly discussed.
1. Introduction.

The Olympic Games of Barcelona 92 will be a major world event. This
fact is reflected in the extensive coastal protection works presently
being built at the Olympic marina (Barcelona) in the coast of Catalonia
(Spain). Since the coast of Catalonia is plagued with erosion problems,
the organizers of Barcelona 92 turned their attention to the possibility
of using alternative shore protection structures which lower the wave

height significantly without disrupting the sediment balance.

A submerged horizontal plate is an example of these alternative
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devices, which for certain conditions of incident waves, and placement,
can be very effective (Guevel et al.,, [2]). However, the use of
submerged breakwaters in coastal protection has been precluded by
several difficulties. First, the performance of the device is strongly
dependent on the ratio of the wave length to the plate length, relative
immersion of the plate, and even the thickness of the device.
Secondly, the hydrodynamic loading on the structure may be very

strong, requiring expensive construction to avoid collapse.

The purpose of this work is to evaluate the transmission
coefficient, the hydrodynamic forces, and the qualitative
characteristics of the flow around a submerged breakwater with a scale
of 1/20 relative to the device proposed for the Barcelona Olympic
marina, using a numerical model capable of treating strong wave
deformations before and after breaking. Wave flume experiments of
the reduced model were available for comparison. The mechanisms
responsible for the efficiency of the submerged breakwater were
clearly identified. It was found that the transmitted waves were
irregular, even though the boundary conditions for the incident waves
were periodic. The numerically computed transmission coefficient was
very close to the experimental value. The numerically computed wave
loadings were much higher than suggested by simple linear estimates,

with significant implications for the structural design of the device.
2. Problem definition.

The problem is sketched in Figure 1, where H, is the height of the
incident waves; Hr is the height of the reflected waves; 1;!3 is the
height of the transmitted waves; h is the still water depth; zp is the
immersion of the top face of the plate; e is the thickness of the plate;
and Lp is the length of the plate. The efficiency of the device as a
wave attenuator is due to three mechanisms (Kojima et al., [3]). The
first is the interaction between the waves passing over the plate
(region II) and the flow underneath (region IV), which results in more
or less strong reflections (region I). The second is wave breaking and

turbulence production, as the incident waves are suddenly intercepted
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by the plate. The third is wave disintegration due to nonlinear effects
(region III). The relative importance of these factors is strongly
dependent on the conditions controlling wave propagation (height,
period, and depth) for given breakwater dimensions and placement. Also,
strong hydrodynamic loadings are to be expected, since the disruption
of wave orbital motion by the plate is accompanied by strong
accelerations in the fluid, and by significant frictional forces (causing
decay of wave momentum and energy). A qualitative and quantitative
determination of the hydrodynamic behaviour of the plate requires a
numerical model which is able to treat strongly distorted waves, during

and after breaking.

Hi Hy Ht
— L el xz_lz o (I[_) L — o
L ] le
(1) h Ip ()
(1v)

A T

Figure 1. Definition sketch for the submerged breakwater problem.

3. Theoretical formulation.
The numerical model used in the present study is based on the two
dimensional Navier-Stokes equations for incompressible flow, together
with an additional equation which defines the fluid configuration
(Nichols & Hirt, [7}; Nichols et al. , [8]):

i /dt41 -Vi=—Vg+oVi+g 1)

V.u=0 )

3F /8t +V -(UF)=0 (3)
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where U=(u, w) is the velocity vector, ¢=p/p is the kinematic
pressure (pressure divided by constant density), v is the kinematic
viscosity, _ﬁ_=(0, —g) is the acceleration due to gravity,
V=(3/0x%,8/9z), and F(x,z,t) is a volume-of-fluid function whose value
is 1 for a point inside the fluid and 0O elsewhere. Hence, the average
value of F in a computational cell is equal to the fractional volume of
the cell which is “wet”. Cells with F=1 are full of fluid, and cells
with F=0 are empty. Cells with values of F between 0 and 1 contain a
free surface. In this way, free surfaces with arbitrary time-dependent
configurations can be represented efficiently in numerical algorithms
for incompressible fluid dynamics. Equation (3) states the Lagrangian

invariance of F, in an Eulerian representation.

The governing equations are solved By a finite-difference
method, using a stretched, and staggered, cartesian grid. The momentum
equations are advanced in time using an explicit scheme with third-
order spatial accuracy for the convection term. The continuity
equation is solved using a pressure-velocity iteration method. The
volume-of-fluid advection equation is advanced in time using the
donor-acceptor flux approximation introduced by Nichols and Hirt [7],
which avoids the smearing of the interface resulting from the
computation of convective fluxes in Eulerian difference schemes, while

maintaining stability and overall volume conservation.

The free surface is identified as the transition between fluid-
occupied and void regions. In cells containing a free surface, the
appropriate boundary conditions are imposed. The numerical algorithm
is able to treat any surface configuration, including overturning and
broken waves, without restrictive approximations. Internal obstacles
can be defined by blocking out any desired combination of mesh cells.

Further details of the numerical model can be found in Lemos [4, 5].
4. Numerical results.

The physical parameters used in the numerical simulations were chosen

to match a 1/20 scale model of the breakwater for the Barcelona 92
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Olympic marina, which was tested in a wave flume by Océanide, France
(unpublished report). The water depth was specified h=50 cm. The
dimensions of the plate were length Lo=80 cm, and thickness ¢=5 cm.
The immersion of the top face of the slab was zp="7.5 cm below the
still water level. The plate was positioned in the middle of a
computational domain 13 m long and 0.75 m high, leaving a distance of
approximately 3 wave lengths free on either side of the plate for
allowing the reflected and transmitted waves to stabilize. The
computational domain was discretized using a mesh of 250 by 30 cells.
The molecular viscosity was set to v=10"% m%s™! to ensure stability,

2 and the time step

the acceleration due to gravity was g=9.81 ms~
was At=10"° s. At the left boundary, periodic waves with period 1.4
seconds and height 12.5 cm were generated by specifying the velocity
components and the water level according to second-order Stokes
theory. Around the slab, free slip boundary conditions were imposed,
due to the impossibility of solving the details of the boundary layer
with the finite difference mesh wused. This choice rules out the
calculation of the frictional drag originated in the boundary layer
around the slab. However, since in prototype conditions the flow will
be turbulent, the drag forces will not follow the Froude similarity, and
thus the drag computed in the reduced model cannot be extrapolated to

prototype conditions.

Figure 2 shows two “snapshots” of the velocity field, separated
by one half of the wave period, for fully developed flow conditions.
The first of these (top) shows vigorous breaking of an incident wave
coming from the left, after being intercepted by the plate. There was a
massive plunging jet, striking the thin layer of fluid above the plate
left by the passage of the previous wave. Near the end of the plate, a
strong vortex was observed. Associated with the flow around this
vortex, a small wave propagating to the left was formed near the end
of the structure. The collision of this reflected wave with the
incident wave greatly enhances dissipation of the incident wave
energy. This feature was clearly observed in video recordings
(unpublished) of the physical experiments. The second picture (bottom)

shows the same wave after passing by the structure. Nonlinear
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deformation was violent, and the vortex system was replaced by a
massive surface shear layer with very high fluid velocities near its
“bump”. Although the height of the transmitted wave is still relatively
high, the flow in the transmission region was highly rotational (Figure
3). Hence the transmitted waves are subject to strong dissipation, since
the rate of dissipation is proportional to the viscosity times vorticity

squared.

T =18.20

7

ceeccccnsy
7/,

cecery
.

eeceeccnisy

Figure 2. Velocity field near the submerged plate.

The flow under the trough of the transmitted wave generated a
suction jet at the front of the plate, and a clockwise vortex
underneath. These localized jets and vortices also contribute to

dissipation.
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Figure 3. Vorticity contours around the submerged plate.

Figure 3 shows the corresponding vorticity contour plots, i.e.
W=V X1 for t=18.2 s (top) and t=18.9 s (bottom). The highest values
of lG}| were concentrated in the regions of high shear, as expected.
Other concentrations of vorticity, either positive or negative, showed
up in regions where counterclockwise or clockwise vortices were
observed in the velocity plots. In regions where the flow was nearly
irrotational, the vorticity was small and spatially uncorrelated. The
vorticity plots also reveal that free-slip conditions were effectively
used around the plate, otherwise vortex sheets would have been
observed. Thus, for the purpose of realistic calculation of the

horizontal drag force, it is necessary to refine the mesh near the plate
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and specify a no-slip or partial-slip (law-of-the-wall) condition. But in
this work the interest was mainly concentrated on the vertical forces
(see § 6). The numerical results indicate that breaking and breaker-
induced vorticity and dissipation are the main agents responsible for
the hydrodynamic efficiency of the breakwater. There is some
reflection at the end of the plate, but this appears to be originated by
the pulsating vortex structure in the transmission region, rather than
by interference between the flow above and under the plate. The
calculation here reported was performed in an IBM-PC 386 computer

running at 33 MHz.
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Figure 4. Time history of the water surface elevation near the right
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Figure 5. Power spectral density (PSD) estimator and RMS amplitude of

the transmitted waves.

5. Transmission coefficient and hydrodynamic efficiency.

Figure 4 shows the time history of the water surface elevation, taken
at the center of the column of computational cells near the right
(radiative) boundary. It is observed that, due to nonlinear effects, the
transmitted waves were irregular, even though the boundary conditions
for the incident waves were periodic. The (RMS) amplitude was
determined by taking the periodogram of the data in figure 4 using

standard FFT routines, and using Welch’s window to minimize leakage
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(Press et al. , [10]). Figure 5 shows the power spectral density (PSD)
estimator and RMS amplitude of the transmitted waves. The

transmission coefficient was

0.0314+2
+= (0625 =023

and the efficiency of the device was

E=1—-C,=~=0.75
This efficiency could be expected in view of the strength of the
breaking. The experimentally observed value (Océanide, unpublished)
was 0.79 (C,=0.21).
6. Wave loading.
In this work, the interest was mainly concentrated on the vertical

force exerted by the flow on the plate. The vertical force was

calculated using the following formula :

L
= /Op {(D ‘—pgz)bottom _(p _pgz)top} dx (4)

i.e. only the dynamic pressure is taken into account. Due to the

structure of the staggered mesh, the integral was evaluated most
simply using the midpoint rule. Figure 6 shows the variation of the
total vertical force, which is the relevant parameter for the design of
the submerged breakwater, was found to be nearly 400 N/m, and typical
peaks had a value ~280 N/m. These values are 38 and 27 times higher
than the linear estimate (e. g. Dean & Dalrymple, [1]):

— 4 cinh(k S)sin(k 222w
Fz—,ok2 sinh(k 2)sm(k 3 ) 3t (5)

where p is the water density, k is the wave number, and dw/ot is
evaluated using linear theory. This is not surprising, for the linear
estimate does not take into account the added-mass inertia force and

the vortex drag force (Lighthill, [6]), which on a physical basis are
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seen to be dominant in this situation. The large vertical wave loadings

have a significant impact on the structural design of the device.
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Figure 6. Time history of the vertical force on the plate.

7. Conclusions and future developments.

The hydrodynamic efficiency of a breakwater, consisting of a
submerged horizontal plate, was investigated using a numerical model
capable of treating breaking waves. It was shown that dissipation of
wave energy by breaking and by vortex motion is the key factor
responsible for the efficiency of the device, and not other mechanisms
that have been proposed in previous studies. The computed
transmission coefficient was 0.25, in fair agreement with the value
found in physical experiments. The computed vertical forces were

rather large, with peaks of up to 40 times higher than predicted by an
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approximate linear theory.

Some improvements now under way are: implementation of a new
boundary condition around the plate, possibly using the capability of
the model for representing turbulence effects (Lemos, [4, 5]); estimation
of the reflected component using a special version of Orlanski s [9]
technique; irregular wave input, to determine more realistic peaks of
wave heights and loading; and a parametric study of the transmission
coefficient and wave loading for different periods and relative

immersions of the plate.
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ABSTRACT

The boundary element approach is implemented to investigate the
nature of wave field inside harbours. The problem is
mathematically formulated within the context of linear theory.
Numerical results are obtained using constant elements for the
case of an idealized circular harbour and for a more general
practical situation.

INTRODUCTION

The adequate engineering planning and development of harbours
is a subject of great importance. The environmental impact
assessment of suggested coastal structures or other
engineering development activities in harbour facilities is
one of the major issues that affect the final decision making
regarding approval of such designs. A first step toward
achieving this goal is to develop an efficient and flexible
tool to analyse the wave pattern within the study area.
Although physical modelling has its own merits but for
financial reasons such an approach may not be implemented without
severe limitations. Numerical modelling, on the other hand,has
been well established as a powerful approach to investigate
several coastal engineering problems. Among the numerical
methods that has attracted the interests of many authors is
the boundary element method. This is due to 1its evident
numerical efficiency, flexibility and convenience for the
investigation of engineering problems. The method has been
successfully implemented to analyse a number of coastal
engineering problems, among these studies, we mention the work
of Ijima and Youshida [4] , Grilli and Lejeune [3], Dermiral
[2], and Mansur and Brebbia [6]

The present paper is concerned with determining the waves
response and the amplification nature of surface gravity waves
entering a harbour of almost uniform depth but with general
geometrical configuration. The problem is mathematically
formulated assuming that the motion is irrotational and the
fluid is taken as an inviscid incompressible one. The solution
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is developed based on boundary element formulation using
constant elements for an idealized circular harbour and for a
practical case representing an existing harbour in Alexandria
Egypt.

MATHEMATICAL FORMULATION OF THE PROBLEM

The fluid is assumed to be inviscid and incompressible.
Cartesian coordinates are used with x, y axes are horizontal
and z axis vertically upwards. The governing equations are
given by

v’6 = 0 in the fluid (1)
g_‘i = g_ﬂ (2)
t z 1z=0 on the free surface
c=- 1 _Qgtl (3)
g z=0
The last two equations can be combined to give
2
9¢ 5 82 _p atz=0 )
atz az

The boundary conditions to be satisfied at the bottom
assuming the water to be of uniform depth h are

a -

—-Qa  |gmen = © (5)
3 ¢ . )

n - 0 on the fixed solid boundary (6)

where t(x,y;t) is the free surface elevation and g is the
gravitational acceleration.

Since water depth is uniform, we can introduce the
velocity potential ¢ in the form

jwt

p(x,y,z;t) = *é P (x,y) 2(2) e 7)

i
The boundary condition at the bottom given by equation
(5) becomes
dz
az |z=-n = 0 (8)
Substituting the above expression of ¢ into Laplace’s equation
(2), we get

2 2
a_f-q-.a_': +k2'p=0 9)
ax ay
Two dimension helmholtz equation, and

dz 2
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where K is the wave number. The solution of equation (10)
satisfying the boundary condition (8) can be written as

Z(z) = B cosh (K(z+h)) (1)

where B constant to be determined.
After substituting from (11) into (7) the velocity
potential ¢(x,y,z;t) will have the form

¢(x,y,z,t) = %; p(x,y) cosh K(z+h)e.h"t (12)

Since the solid surface is parallel to z axis, then by
using equation (12), the boundary condition (5) can be written
as

g—g =0 on the fixed solid (13)

We can assume that at infinity, the influence of the

harbour is minimal and that y(x,y) is equal to wo(x,y) which

is given by

-iky sin f8

¢°(x,y) = cos (Kx cos fB)e 0<B<n (14)

where ¥ is a straight crested standing wave with the crest

inclined by an angle B to the shore line.
The problem now is to find the solution of the equation
(9) that satisfies the boundary conditions (13) and (14).

INTEGRAL EQUATION FORMULATION

The scattered wave caused by the presence of the boundary
of the harbour can be written in the form of contour integral
as

p(x,y) = Jf(x1.y1) G (x,y;x1,y1)ds (15)

s

where f(x,y) is source function that depends on the boundary
condition given by equation (13), Carrier and Pearsm (1] . The
Green’s function is chosen to be such that

Gx,yix,,y)= - 1/4 i H;(KR) (16)

R =/<x-x,>2 + (y-y° (7)
and H; (KR) is a Hankel function of the first kind.

Since disturbance due to the harbour at infinity is
vanishing, thus the solution of equation (9) can be written as

P (x,y) =g, (x,y) + [£(x,y,) € (x,yix,,y,)ds (18)

S
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At any point (x',y’) on the boundary

. p (x,y)
lim a’o d
[—_a,n + 3a f(x1,y1) G (x,y,x1,y1)ds] 0

’
X,Y_—. X ,Y

(19)

Since H;(KR) is singular for a small value of the argument,
the following limiting relation is used

TiEm) —— =10 () (20)
as KR —— 0
We consider the path of the integral to be along the
boundary except at the point (x’,y’) where the contour is
deformed into a small circle of radius e.

Hence the equation (19) can be written as

3¢° , . a
3 (x’,y’) + lim P [f(x1,y1) G (x,y;x1,y1)ds] =0
x.y__, x".y’
a¢o
75 Xy + f(x,,y,)) G (x7,y"ix ,y, )ds +
s
lim Jf(x1,y1) Gn(x,y;x1 ,y1)ds = 0 (21)
, s
xoy__, x".y

From equation (20) as R —— 0 , it follows that,

n
. 1 .o, 3 KR _ ;s
lim 2—; f(x Y )I a_R In (T) R dé 1/2 f(x Y )

R— 0 0
Thus equation (21) can be written as Liggett [5]

3#’0 1

77 Xy E(x L,y )I6 (x7,y ix Yy )+ 5 £(x7,y7)=0

s
(22)

where 1 3 \

Gn (KR) = - Z s HO(KR) (23)

, 2 . 2
R=/ (x"-x) "+ (y'-y) (24)

NUMERICAL SOLUTION

It is clear that the solution ¢(x,y) for equation (9) is
contingent on generating a solution for f(x,y) in equation
(22). This is achieved numerically by dividing the boundary S
into finite number of elements N defined by a fixed number of
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nodes. The source function in each element is approximated by
f(x,y) =} N (x,y) £, (25)
Where Ni(x,y) are the shape element functions and fi are the
unknown nodal value of f(x,y).
Substituting equation (25) into equation (22) we get

%, (x,.y) + LT £[C(RRON (x,y) ds + % £ =0

dn e 1i
(26)
R=/(x-x)%+ (y -y)? (27)
i // IR y’ Yy
Equation (26) may be written in the form
N
¥ 3, fj = b i=1 to N (28)
J=1
for constant elements case, we have
a = la.,+Jc(KR> ds (29)
1 2 ij n
e
9y
- . o (x,,y.)
b' Ear it (30)

dij is the kronecker delta. Equation (28) is the set of N

linear algebraic equations in N unknown fr = 1..... N.

These N algebraic equations can be solved to give the
source distribution function f(x,y) at the N points of the
boundary S.

We can now define the wave amplification factor A at pint
one the plane Z=0 to be equal to the ratio of the maximum
wave height at that point to the maximum wave height at
infinity.

From equation (4) and (12) the surface elevation t(x,y,t)
can be written as

t(x,y;t) = (1/g) B cosh (Kh) p(x,y) e ™" (31)

A

=(1/g)B cosh (Kh)[p (x,y)] (32)

max

From equations (14) and (31) it follows that

t,= (1/g) cosh (Kh) cos(Kx cos B) o itk sin )

(33)

|t , =(1/g)B cosh (Kh) (34)

oln
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and hence |t|

A= — mex ‘¢ (x,y)' (35)
l to | max

NUMERICAL RESULTS

To illustrate the implementation of the boundary element
solution discussed above the following two cases are
considered. The procedure was implemented on a VAX system
using a double precision pascal.

Case (1) : Circular harbour

In these case the idealized circular harbour shown in
figure (1) is considered. The boundary has been subdivided
into 20 elements figures (2)-(3) give the graphical
representation of the variation of amplification factor A
against certain point on the boundary. Maximum amplification
occurs at the points in between G and H and at points in their
neighbourhood. When y is increased from =n/3 to n/4 maximum
amplification occurs in the same region. But the corresponding
value of A are higher. Figure (4) shows the value of A at a
specific point G for a large range of values of K. Figure (5)
shows the calculated values of A inside the harbour, there is
an increase in the value of A as X increases, and no change in
the value of A as Y is changed. Outside the harbour A is
approximately constant.

Case (2) : A practical existing harbour

In this case we consider the Eastern harbour in
Alexandria city, Egypt. The geometric configuration of this
harbour as shown in figure (6). The boundary element approach
discussed in this paper has been implemented to obtain the
nature of waves amplification within the area. Results
obtained are graphically displayed in figure (7) some point
inside the harbour.
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Figure 1. Geometric configuration of a circular harbour.
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Figure 2. Frequency response of different point of
the harbour for different values of k
y =n/3 and B = 0
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Figure 3. Frequency response of different points of
the harbour for different values of k
Y =n/4 and B =0
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Figure 4, Frequency response at midpoint G .
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Figure 5. Frequency response for selected points
inside the harbour
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Figure 6. Geomertric configuration of Alexandria harbour.
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Figure 7. Frequency response for selected points
inside the harbour
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ABSTRACT

The aim of this research was the forecasting of wave spectraunder storm
conditions in La Plata River. Since this phenomenon is heavily dependent
upon the water levels where the waves propagate the computation of the
storm surge levels throughout the river basin had to be made prior to the wave
forecasting. For this purpose a two- dimensional modelling of wind-induced
currents and levels was carried out. Calibration with field data to adjust the
friction coefficient was done. Later on, wave spectra generation and propaga-
tion for different locations within the river was computed using an uncoupled
numerical model. This model was also calibrated and checked against field
data. Despite of the simplicity of the model itself, the results agree very well
with records obtained under storm conditions.

INTRODUCTION

The LaPlatariver is a large water body connected to the Atlantic Ocean.
It is 290 km long and has a width ranging from 40 km upstream to 220 km at
the mouth, as seen in Figure 1. In addition to these large dimensions a
particular feature of this river is its shallowness: on 75% of the basin surface
depths smaller than 7 m can be found.

This study started in 1988 with the aim of investigating the wave
characteristics at selected points of the river caused by severe storm surges
that are regularly caused by E and SE winds blowing from the ocean.

Since the characteristics of the waves reaching a certain zone do not
only depend upon the initial conditions of the wave field but also on the water
depths along the paths of the incoming wave rays, a previous estimation of
these depths had to be made. This is particularly important in La Plata river
due to the tremendous variation of the depth field in the middle and upper
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zones of the river produced by intense wind action as said in the previous
paragraph. To provide just an idea of the influence of this phenomenon, it is
possible to find storm surge records of up to 4 m in certain cases, in addition
to the astronomical tide levels. Taking into account the mean water depth of
the basin this effect cannot be disregarded. In fact, a thorough modelling of
the level field is as important as the the wave modelling itself due to the causes
mentioned above.

Therefore, a two-dimensional modelling to reproduce the current and
levelfield was developed; by this means the astronomical tide effect could be
studied and also the storm surge effect could be simulated for different wind
directions and intensities. This model was calibrated with field data so that
to insure a reasonable accuracy of the simulations. These data were obtained
from tide level meters at coastal stations along the river basin in both
Argentina and Uruguay. This was a particularly useful step with regard to the
level field reproduction due to the large horizontal dimensions and shallow
depths of the river basin. In such a situation, the turbulent bottom friction
plays a dominant role in both the current-level and wave computations, for
this reason the friction coefficient must be very carefully evaluated if a
reasonable reproduction is desired.

SIMULATION OF THE ASTRONOMICAL TIDE

This step of the research was made using a numerical model that solves
the depth-integrated, time-averaged Navier-Stokes equations:

bu = 109 0m 1T~ Tnx U ?U

DtV = o 8% th nen T a2 o @

by _ = 19 0 1Ty~ Ty i 4

Dt fe- U P oy g6y+P h+n +A 6x2+6y2 @)
o , o[Uh+n] | d[V(htn] _ 3)

ot ox dy

where U and V are the depth-averaged current velocities, 7 is the free surface
elevation, h is the mean local depth, f is the Coriolis force and 7,; and 7y; are
the wind and bottom stresses respectively. This equation system was dis-
cretized by an ADI numerical scheme. To carry out the model calibration, the
following steps were undertaken:

1.- Aline passing through the cities of San Clemente (Argentina) and Punta
del Este (Uruguay) was adopted as the river’s outer limit, as shown in
Figure 1. This was done so because the storm surge effect beyond this
limit can be considered negligible as compared with the astronomical tide
effect.

2.- This line represents an outgoing open boundary of the numerical model
where it is neccesary to define the water levels in the course of time. This
condition was therefore provided by the astronomical tide levels calcu-
lated by means of the tidal constituents at both locations. A linear
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interpolation of water levels along this line was then assumed to complete
the formulation of this boundary condition.

3.- Three ingoing open boundaries were defined in coincidence with the
mgjor tributaries of La Platariver, namely: the Pa13'ané de las Palmas (3630
m’/s, direction 202), Parand Guaza (12,870 m’/s, direction -562) and
Uruguay (6,900 m’ /s, direction 2259) rivers for which a mean annual
discharge and incidence direction were adopted.

4.- Awater depth grid was then prepared based on existing surveys of the river
basin.

The calibration process consisted basically in modelling the astronomi-
cal tide adding the incoming flow of the tributaries and carrying out an
adjustment of the bottom friction (Chezy coefficient) in a way such as to get
a good correspondence between the computed and predicted levels. To
simplify the computations, a constant friction coefficient was adopted for the
whole river basin. A careful analysis on the real value of this coefficient was
made, values currently cited in the literature could not be used because of
the special features of this river. Values provided by the river engineering
experience shown dissimilar results due to the fine sediments of the bottom,
on one side, and the lack of knowledgde of the bedforms on the other side.
Based on this analysis and preliminary runs of the model it was concluded
that a constant value of C = 115 m'%/s would provide the best agreement.

Some results of the calibration procedure can be seen in Figure 2 where
the predicted (by harmonic analysis) and computed astronomical tide levels
at the Montevideo and Buenos Aires stations have been included. As seen
there, there is a good coincidence in the amplitude and phases of both levels.

Once the friction coefficient could be determined, the modelling of
astronomical tide and flow discharge of the tributaries was made, later on,
wind action was added. All the driving forces were gradually included in the
modelling process during an initial, short, time of the process to avoid the
generation of gravity waves caused by an instantaneous driving force.

A special consideration deserves the available wind data for this study:
at first, the Hydrographic Survey of the Argentine Navy provided an estima-
tion of the wind fields on the whole region for the selected storms based on
coastal measurements which proved to be of very low intensity to generate
the recorded storm surges and waves. Therefore, the authors decided to use
a wind field characterized by a constant speed and direction. Even so, an
analysis based on synoptic weather charts had to be made in order to select
storm situations during which such a constancy could be reasonable. This was
especially important for the wind-wave forecasting carried out later.

A wind speed of 10 m/s was used in coincidence with the E and SE
directions and resulting current fields corresponding to the final time of the
simulation can be seen in Figures 3 and 4; the isolines of water levels can be
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observed in Figures 5 and 6. These level fields were then used in the study of
wave generation and propagation throughout the river basin.

FORECASTING OF WIND-WAVE SPECTRA

The method used to compute the generation, dissipation and propaga-

tion of wind-wave spectra has been extensively been studied by Collins [3]

and Cavaleri et al.[2]. It consists essentially of solving a steady- state equation
such as: N

cg. VS = Sg + Sk “4)

where S; and Sy represent the wind generation and turbulent bottom friction
terms respectively, S is the spectral density and ¢ is the wave group velocity.
The wind generation term can be, as usual, be represented by means of the
Philips and Miles generation mechanisms so that, if k is the wave number:

Sg = a+p.5(k) &)
The bottom dissipation term, according to Collins [3], is:

ce.g8 . k.cg
27 . 0% . cosh(kh)

.S(H) . D) (6).

where c; is the friction coefficient, is the mean wave velocity at the bottom,
S(f) is the spectral density at frequency f and D(0) is the directional spreading
function adopted as a function of cos*0 in this case. The friction coefficient
was evaluated with a formulation given by Swart(1978). S(f) was represented
by means of the JONSWAP formulation while energy saturation was
modelled as suggested by Philips (1957) in the following way:

S = 0.073g%.075. 5() )
S©) = —g-n.cos“(d) @)

where S(0) is due to Barnett [1]. This saturation limit is then the maximum
which a particular wave frequency can attain. For this reason a truncation
factor, u, for the spectral growth mechanism is defined as follows:

w= - () 2

In practice, this is a simple model which carries out the accounting of
all the energy packets transported by the wave travelling along the different
wave rays arriving at the point under consideration. Summation of all the
wave packets for each frequency gives then the spectral density contribution
to the whole spectrum. A further summation of the remaining frequencies
gives finally the final spectrum. This is an uncoupled modelling technique due
to the fact that each wave ray corresponding to each frequency behaves




116 Computer Modelling for Seas and Coastal Regions

00

"s/ut O ve Sumolq puim gSH ue Aq pasned (S 00:ST
‘SSNIBT) S4Y [SE =11 S[OA] I91eM JO SAUT[OS] -'g SING1

0048 000022 000047 000027 00004

sy

g SRS

S L e e D Dl

g S s

B L L TT SpppIQUIPE NP

00002

0006-

000z¥

00026

0002¥1

000281

0002v2

000282

S/ () Ye Sumolq pum jseq ue Aq pasned (SIy 0Q:ST
‘G8NILIBT) S4 [SE =11 S[OAJ] Io1eM JO SIUTIOS] -'§ SInry

000042 000022 000047 000027 00004
T T T
) ]
] 1
P
....................... teeeeNmmeaded e

S S

B S

/

R B R o

\

By A

S S QSR Attt L Rt Dl

T T e

00002

0008~

0002¥%

00026

0002¥1

0002871

0002¥2

000262



Computer Modelling for Seas and Coastal Regions 117

independently of each other; therefore, non-linear wave interactions cannot
be modelled. It simplicity however makes it very attractive for practical use
since it can be even used on a personal computer.

Due to the large distances involved in the computations, the
phenomenon become friction-dominated, therefore a calibration stage had
to be made in order to find an optimum value of the friction coefficient. Two
values of c¢ were tested, 0.005 and 0.01, the latter being currently cited in the
literature. The results showed however that a ¢ = 0.005 provided better
results due to the large distances travelled by the wave rays, shallowness of
the river basin and the fine-grained bottom sediments. Wave spectra
measured by a buoy at the port of La Plata in 1985 were used to check the
validity of the computations.

A previously developed wave refraction model was used to compute the
wave rays for five different locations within the river, namely: the ports of
Buenos Aires and La Plata, the Oyarvide Tower and Lightering Zones A and
B as shown in Figure 1. Examples of waves irradiated from the port of La
Plata and Lightering Zone A can be observed in Figures 7 and 8. Results of
the forecasting have been included in Figure 9 where one may see the good
coincidence between the computed and measured spectra at the port of La
Plata. It is worthy to be noted that, despite of the selection of the appropriate
friction coefficient, this acts only as a sort of "scaling” of the whole spectrum
because the peak frequency remains practically constant for a much different
value of this coefficient. The shape of the spectrum can be also reproduced
fairly well. The difference in the high frequency range are due to the lack of
modelling of these frequencies since they are not important for engineering
purposes. The low frequency range of the measured spectra instead can be
mainly attributed to transmission noise.

It must be pointed out that a steady state of the water levels in the river
was considered in this modelling. This simplifying assumption arises from the
fact that the duration of the selected storms was longer than the travelling
time of the main spectral constituents.

CONCLUSIONS

As one would expect, the numerical forecasting of the wave spectra at
five different locations within the La Plata river basin showed increasing wave
heights and decreasing peak frequencies with an increase of the wind speed.
This general result holds for each separate location.

Comparing the results from different locations, it can be observed a
strong filtering effect caused by the bottom topography of the river basin on
the wave rays which are able to arrive at each one of them. Therefore, the
upstream locations exhibit much smaller wave heights and peak frequencies
than those located at the outer part of the river. Here, of course, there are no
restrictions imposed by either the bottom friction effect or the coastlines as
found in the inner part of the river.
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Figure 9.- Results of the wave spectra forecasting for the five selected
locations within the river basin.
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An interesting result found in this study is that the most severe wave
conditions are not those coincident with SE winds but they are produced
instead by E winds. This phenomenon is surely due to a slightly more efficient
"piling up" effect of the water body of the river when winds blow from the E
direction that provide also somewhat deeper depths than SE winds do.
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On the Calculation of Extreme Waves and
Design Waves for Designing Coastal
Structures

R. Bilgin, T. Cam

Department of Civil Engineering, Karadeniz,
Technical University, 61080 Trabzon, Turkey

ABSTRACT

The hindcast study of extreme wave conditions at the
sites of Ordu - Giresun, Trabzon and Hopa of the
Eastern Black Sea coast of Turkey is described. The
average hourly wind speed values observed at the
meteorological stations and extracted from the
synoptic weather charts prepared periodically for
weather forecasting are used to predict waves by the
method of SMB (CERC [1]). Then, the Extreme Value
Type I (Gumbel) distribution has been applied to the
annual maximum waves, consequently the extreme waves
with various return periods are estimated. Among the
results the estimates made by using the synoptic data
showed higher values about 1.5 to 3 times, than those

of the meteorological stations.
INTRODUCTION

The growing importance of the coastal and offshore
engineering structures requires estimates of extreme
wave climates and 1in particular reliable design
criteria and of the environmental information. This
task is ideally realized by analysing 1long time
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series of the parameters of interest, but, where
these are not available, other means have to be

derived.

Around the coasts of Turkey wave measurements,
one of the most critical parameters for the design of
a sea structure are sparse, especially at the coasts
of the Black Sea are almost absent. The availability
in the same region of reliable meteoroligal data
during the last 50 years allowed us to make use of

the hindcasting technique.

In obtaining the reliable estimates of extreme
waves there are various methods developed among which
to choose the most appropriate one and the
distribution is the main topic of interest. Besides,
there are not any strict principles or standards to be
obeyed by the design engineer for coastal structures.
The risk or encounter probability that during its
lifetime a structure has to face conditions beyond
some predetermined limits is closely related to

return period of the design wave as follows

E, = 1-0-g=)F (1)
P

where Ep indicates risk, L lifetime(year), R, return
period(year). The common principle is that return
period of design wave varies with the functions and
the coasts of the structure. For example, a design
wave with return period of 25 years is reasonable for
designing a rubble-mound coastal protective structure
but for a breakwater of a large port, a design wave
with return period of at least 100 years has to be
projected (Muir and El-Shaarawil21]).
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METHODS OF WAVE PREDICTION AND THE DESIGN WAVE

Sea waves have the most complicated processes in nature
so that it 1is extremely important to define
characteristics of the waves and the functions of the
structure to be built. There are two main approaches
to define the mathematical structure of complex wind
waves : Determination of probability distributions of
wave parameters and of the power spectrum. As stated
above, because of the scarcity of wave measurements
in Turkish coasts it has not been examined and tested
for observed probability distribution of wave
parameters whether they are adequately fitted to the
theoretical distribution or of the power spectrums to
the theoretical models spectrums (Ozhan[31).Therefore
a hindcast study of extreme wave conditions is done

to predict the design waves.

The methods of wave prediction in coastal
engineering practice may be grouped as follows

a) The methods of prediction of statistical wave
height and period; namely the significant wave height
(H1,3) and significant wave period (Tj,3) which are
determined from the observational figures
(Breitschneiderl(41, Faveyl5]).

b) The methods of wave power spectrum : A
relevant model of a power spectrum is chosen first,
then by applying to the wave data, power spectrums of
the waves, significant wave heights and periods are
calculated (Silvesterli61]).

In this study the significant wave concept is

considered.

significant wave height and period

Significant wave height is defined as the average
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height of the one - third highest waves and it was
about equal to the average height of the waves as
estimated by an experienced observer. The significant
wave period is similarly defined as the significant

wave height.

Statistics of the extreme waves

In this study, Extreme Value Type I distribution is
used for estimating the design waves. The

distribution function is as follows:

_ -A(H{/3~B)
F(H, ) = exp [-e 1737801 (2)
A=—— , B=y Y 3
o 2’ Hyy3 =5 » Y =0.5772 (3)
Hy/3
- - 1 n
qu/3 =y i§1 (H1/3)i (4)
5 1o 2
o = =—" -1 (5)
Hyy3 = %y v a5 (905 - By )4l

1/3

where Hj,3 is the maximum significant wave height
observed or estimated during the year; F(Hj,3) is the
total probability that the maximum wave height 1is
less than or equal to the significant wave height; A
and B are the parameters of the distribution; UH1/3J
0g1,3 -H1,3 and Sy1,3 are the statistical parameters
of the distribution belonging to the population and
the sample respectively.

To estimate thesignificantc wave height the following

equation is used

1
H, o, = B - 2 fntn [F(H]/3)] (6)

1/3
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Supposing the highest significant wave heights
for the referenced time period are ordered in the

following way:

), < (H,,) <(1/3)3 cen <(H1/3)m “ee <(H1/3)n

(H,/4), 1/372

where n indicates the no. of values, m = 1,2,..,n
indicates ordered no. of wave height. The probability
corresponding to each Hj, 3 in the array is obtained

by the following equation

= (7)
F(H1/3) Nl

If each value of Hj/3 in the list plotted against the
corresponding probability computed from the eq.(7) on
the Gumbel probability paper it is expected that all
the plotted points are clustered around a straight
line. The equation of this line is given by the
Eq.(6).

Choosing the design wave

As a general approach; first of all, depending on
lifetime of the structure a return period is defined
and the corresponding wave height is found from the

prediction line on the Gumbel probability paper.

The egquation of the relation between Rp and

F(H1,/3) can be written as follows:

R = —0t (8)

P 1-F(H1/3)

where Rp 1is the return period , 1-F(H;,3) is the
exceedance probability of highest wave in comparison
with the design wave, T is the avarage time period

between events, generally taken as one year.
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APPLICATION

Wind data

Since the estimation of the design waves with various
return periods are aimed at the coasts of the Eastern
Black Sea (from Ordu to the Russian border) the
historical wind measurements observed at the
meteorological stations in the region are used in the
analysis. Wind data are derived from two different
sources; namely the meteorological stations situated
in the coastal area and the synoptic weather charts
drawn periodically each day by the Meteorological
Department in Ankara.

The wave prediction methods explained in detail
in CERC use wind data which are supposed to have been
observed above sea surface but the available wind
data are observed by the land stations. This creates
some problems although the necessary adjustments are
made, it 1is well known that it is difficult to
quantify the difference between the wind speed
observed on the land and of the sea.

In the investigations done by Hsul7]1, following

equation has been developed

0.67

= 3.0 (U ) (9)

U kara

deniz

where Ugey and U)jypng represent wind speed(m/sec) on
the sea and the land respectively. The conclusions
reached in this study gave dgreater estimates than
that of Hsu.

The wind speeds extracted from the synoptic
weather charts are known as "geostrophic winds" which
are about % 25-40 less than the wind speeds above the
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sea. Thousands of the synoptic charts had to be
examined to obtain candidate storms producing the
highest waves in each year. The wind speed of at
least 5 m/sec is considered as the base limit for the
synoptic data. The values below this limit are not
included in the analysis. There has to be at least
3.62 cm (winter) or 4.80 cm (summer) between two
adjacent isobars to have this wind speed on the
latitude of 45°. Therefore, the charts displaying
higher values are eliminated at the preliminary

examination.

Synoptic wind speeds are calculated for three
coastal sub-areas indicated below
coast 1 : 37° E - 39° E Ordu-Giresun
coast 2 : 39° E - 40.4° E Trabzon
coast 3 : 40.4° E - 41.7° E Hopa

The positions of these coasts are shown in Fig. 1.

BLACK SEA

ORDU
GIRESUN

TURKEY

—
N

Fig.1. The coastal bands and the meteorological stations where
the wind speeds are observed or estimated
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Computation of fetch lengths

Any wind speed recorded at a coastal station with a
direction that can create waves is supposed to be
effective along the fetch lengths. Effective fetch
lengths for the directions that create waves in the

region are computed and summarized in Table 1.

Table 1. The effective fetch lengths (km)

; Direction Ordu Giresun | Trabzon Hopa ;
b i
| W - - - 698.00 |
| WNW - 484.90 307.60 658.70 |
i NW 352.20 629.50 676.90 519.10 |
| NNW 485.80 450.60 419.00 257.20 |
| N 390.20 366.90 308.10 130.80 |
| NNE 321.70 299.90 231.00 84.60 |
[ NE 269.40 281.40 201.20 - |
| ENE 274.20 282.80 143.80 - |
L J

Computation of storm waves from average wind speeds

Storm waves are computed by using both recorded wind
speed and the wind speeds computed from the synoptic
weather charts for the Eastern Black Sea Region where
is divided into three sub-areas. Transformations of
wind characteristics into waves is done by the method
of SMB. The maximum annual storm wave heights are
determined from these wave values. The period of
observations taken into consideration to evaluate

the wind waves are summarized in Tablo 2.

Extreme wave statistics

Annual maximum significant wave heights estimated for

each sub-region are arranged in increasing order with
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corresponding significant wave period and
nonexceedance probabilities based on the Weibull
plotting positions formula(Eq.7) as shown in Table 3.
These data are plotted using an Extreme Value Type I
distribution and the fitted distributions obtained as

in Fig.2 for Hopa.

Table 2. The period of observations

Synoptic chart Meteorological stations
Coast No. period City period
I 1977-1985 Ordu 1969-1985
I1 1977-1985 Giresun 1969-1985
I1I 1977-1989 Trabzon 1969-1985
Hopa 1972-1988 1
PROBABILITY (100/N+1)
1 5 10 20 S0 70 80 90 95 9697 98 99
A 1 ) 1 13 1 1 1 1 1 I S} ] 1
10
9
L
8 ® Metecrological station /u/
® S 1
B -1 |
Hi/3 /14
(m) 6 /
o1
5 )
»d
¢ e
L1
o] IT
3 2/4/~ al
L~
2 e T
/r/ WAVE PROBABILITY ANALYSIS
/ Gumbel Extreme Value Typel Dist
1 % Hy/3:Annual max significunt wave
Coast 3: Hopa [1977 13988)
101 11 15 2 3 4 S 1‘0 15 20 30 40 S0 100

Return period (year) Rp= N—,,;1



130 Computer Modelling for Seas and Coastal Regions

Using the fitted line on the Gumbel probability paper
design wave heights and associated wave period for
the return periods of 10, 25 and 50 years are
estimated for the sub-regions(Tables 4, 5, 6, and 7).
Computational of the wave period is done by using the
observed average wave steepness coefficient (wave
height/wave length) that is known as varying around
0.04 from the work of Bilgin et. al.[8]. Wave period
is computed from the following equation

_0.04 g 2
(B4, . Ti/3 (10

where (Hj/3), is deep sea wave height.

Table 3. Ordered wave data estimated from the

synoptic weather charts(Coast 3-Hopa)

order NoJ] year |significant|significant Non-exceedance

wave wave period|probability

«n Hy /3 (m) Ty,3 (sec) FiHy/3)%X103
1 1981 2.10 5.80 8
2 1984 3.17 7.10 17
3 1982 3.23 7.20 25
4 1979 4.18 8.25 33
5 1983 4.20 8.20 42
6 1977 4.22 8.20 50
7 1980 4.40 8.40 58
8 1978 5.20 9.10 67
9 1985 5.50 9.40 75
10 1987 6.00 9.80 83
11 1988 6.50 10.20 92
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Table 4.

Estimated design waves (Coast 1 - Ordu)

131

f

I
| return period [synoptic chart|meteorological station[
I Rp Hi/3 | T1/3 H1/3 T1/3 |
| (year) (m) (sec) (m) (sec) |
[ |
[ B
| 10 4.00 8.00 1.59 5.05 |
| 25 4.65 8.63 1.73 5.26 |
] 50 5.15 9.08 1.83 5.41 |
L J

Table 5. Estimated design waves (Coast 1 - Giresun)

return period

synoptic chart

meteorological station|

[

l

l Rp Hi/3 T1/3 H1/3 T1/3 |
| (year) (m) (sec) (m) (sec) ]
i i
l 10 4.00 8.00 2.30 6.07 |
| 25 4.65 8.63 2.67 6.54 |
| 50 5.15 9.08 2.91 6.83 |
L J
Table 6. Estimated design waves (Coast 2 - Trabzon)

return period

synoptic chart

meteorological station]

[

l

| Rp Hy/3 T1/3 Hy/3 T1/3 |

' (year) (m) (sec) (m) (sec) |

! |
I

; 10 5.36 9.26 2.30 6.07 |

| 25 6.09 9.88 2.67 6.54 |

| 50 6.63 10.30 2.91 6.83 |

L ]
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Table 7. Estimated design waves (Coast 3 - Hopa)

f |
| return period|synoptic chart|meteorological stationJ
I Rp Hy/3 T1/3 Hy/3 T1/3 |
| (year) (m) (sec) (m) (sec) |
i 1
| 10 6.55 10.24 3.00 6.93

| 25 7.75 11.13 3.65 7.65 |
| 50 8.60 11.73 4.10 8.10 |
| — ]
CONCLUSIONS

In this study, with the aim of providing reliable
data of deep sea wave characteristics, in particular,
design waves for coastal and harbour engineering

structeres, following conclusions have been reached:

1) The design waves of various return periods
estimated by the wind speeds observed at the
meteorological stations in the Eastern Black Sea
region showed smaller values than those of the wind
speeds extracted from the synoptic weather charts
(Tables 4, 5, 6 and 7). This significant difference
is mainly due to the erroneous wind measurements at
some of the meteorological stations surrounded by
high buildings. Therefore, the design waves of
synoptic origin are relatively reliable and should be
preferred.

2) The estimations have shown that design wave
characteristics in the Eastern Black Sea are
increasing from West to East. This is due to the
prevailing wind of North - West direction so that the
fetch lengths increasing towards East. Therefore,
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Hopa sub-region has longer fetch lengths and higher
design waves.

3) In the Eastern Black Sea from West to East,
design wave heights for 10-year return period vary
between 4.0 to 6.55m, for 25-year return period, from
4.65 to 7.75m, for 50-year return period, from 5.15
to 8.60 m.
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ABSTRACT

The aim of this research work was the calculation of the wave calmness
in arbitrary-shaped port basins. The governing differential equation was
firstly devised by Berkhoff (1972) and Schoenfeld (1972). This is the so-called
mild slope equation and can be used only in case of gently bottomed or
gradually-varied depths. So far several methods have been proposed to find
out solutions to the aforementioned equation. The domain of the equation is
the fundamental difficulty of this problem since this extends to infinity. In this
paper an adaptation of a coupled FEM-BEM model developed by He Yin-
nian and Li Katai (1987) is presented that leads to the obtention of useful
solutions when very simple elements are used in the domain discretization
and allows an a-priori estimation of the error involved in the approximation.
Results obtained with this method are checked against theoretical solutions
and other numerical methods and the order of convergence is empirically
established.

INTRODUCTION

He Yinnian and Li Katai [ 1] have studied the use of a finite element
method combined with a boundary element method to radiation problems
that lead to the well-known Helmbholtz differential equation:

Vo + 2o =f inR (1)

In their work, these researchers show the theoretical correction of the
formulation of the coupled method and obtain an a-priori estimation of the
error in the approximate solution. It is possible to adapt this method to
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determine the propagation of water waves on a horizontal plane.

The phenomenon is governed by the mild slope differential equation:
V(c.cg.ch)+w2.£c§.g0=0 in R? )

by the boundary conditions at infinity:

p =00
% _ikp=0c" r=f|>w ®)

which are known as the Sommerfeld radiation conditions and by appropriate
reflection conditions on solid boundaries, provided that they existed.

Wave agitation in port basins with reflecting boundaries can be com-
puted by means of Equation (2).

ANALYTICAL FORMULATION

A schematization of a typical geometry to be studied can be seen in
Figure 1, this is a port basin. The basin has an irregular shape together with

[
5/

Figure 1.- Schematization of a typical port basin
geometry.
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varying depth.

The solution will be calculated on a domain Q made up by joining two
non-overlapping regions, that is to say:

Q = Qu+ Qo 4)

Region Qy corresponds to the port basin itself and is limited by the
BCD and I'y curves. In the figure mentioned above, this boundary is shown
as a semicircle of radius Ry but, in general, I'y can take on an arbitrary shape.
The water depth may vary on this region.

The port will be able to be limited by vertical walls or by a combination
of vertical and inclined walls; then, the energy can be fully reflected at the
BCD boundary or not. The outer region, Qo is limited by I'y, the physical
boundaries AB and DE, and extends towards infinity. This region is used to
model the open ocean or water body surrounding the basin.

We shall asume that the boundaries AB and DE are vertical and
perfectly reflecting ones and that the water depth is constant within Q0. In
this way, the solution within this region can be linearly decomposed in a
system of incident and reflected waves and another system of radiated waves.
This first system is defined as the one which would be obtained if the depth
were constant throughout the whole region x > 0 and the port basin would
not exist, with a vertical wall extending from point A to point E. This wave
system is determined once the incident wave system is specified.

The radiated wave system is then simply defined as the difference
between the real wave system within Q¢ and the incident- reflected wave
system and represents the radiated energy from the mouth of the port basin
towards infinity. This wave system satisfies asymptotically the Sommerfeld
radiation condition. Therefore, the problem stated within Q is decomposed
in totwo problems on different domains: 2y and Qo.

The reduced small-amplitude wave Equation (2) will have to be solved
within the domain Qg specifying along the boundary BCD a partially-reflect-
ing condition as follows:

n.Vo—i.k.a.p =0 5)

In Equation (5) a is a real coefficient in a way such that @ = 0 means a
complete reflection and ¢ = 1 a complete absorption. Within the domain
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Qy, whose depth is considered to be constant, the Helmholtz differential
equation shown below will have to be solved:
Vip + Ko =0 (6)

If, in addition to that, ¢ is linearly decomposed in a system of incident
and reflected waves, ¢ and a system of radiated waves, ¢r, Equation (6) will
then be transformed to:

(Vi + K2 p) + (Vipr + K2 pr) = 0 (7

Since the radiated wave system is assumed to be known, the reflected wave
system originated by the existence of an impervious vertical wall that is
limited by points A and E of the sketch of Figure 1 is not difficult to find out.
As an example, let us suppose that the incident perturbation has the form:

¢i = exp[i.k(x.cosf +y.sinf] 8

where g is the incidence angle, as shown in Figure 1. The reflected wave will
be then as follows:

¢ = exp[i.k(—x.cosf +y.sinf] )
therefore, for the incident-reflected wave system it follows that:
@ = R.cos (k.x .cosB).e-kysenp (10)

Carrying out a direct substitution it can be shown that ¢ satisfies the
Helmbholtz differential equation and that along the AE boundary the follow-
ing condition is verified:

n.Vo =0 (11)
The radiated wave system will then be obtained as a solution of:
Vipr + Kgr = 0 (12)

within € together with the boundary conditions:

ﬁ.VgOR =40 (13)
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along the physical boundaries AB and DE, and also

lim 0PR . _
r—>oo\/;'(ar —z.k..goR) =0 (14)
along the boundary at infinity.

Both regions, Qu and €2, will have to be coupled by means of ap-
propriate continuity conditions along the common boundary I'y. Therefore:

¢ = ¢+¢r (15)
n.Vo = n.V(p + gr) (16)

represent the continuity of the free surface and the velocity in the normal
direction to I'y respectively.

VARIATIONAL FORMULATION

Using the Green integral formulae and bearing in mind that throughout
Qu Equation (2) is the governing equation, the variational problem as-
sociated with the differential problem raised in the previous section can be
established as finding out ¢ in a way such that:

—s{ c.cg.Vp.Vv.dQ + Qf wz.gchp.v.dg + s{ c.cgn.Vov.dS =0 (17)
. 3 082,

holds for all the v members of the H'(Qy) class of functions. The boundary
92y has been made joining curves BCD and I'y . If we say that

A =n.Vo|r (18)

—Jccg V. Vv.dQ+[w? L py.dQ+ fe.cun Vo v.dS+[c.cehy.dS=0 (19)
Q. Q C BDF T,

Now, Equation (6) governs within region €. Making use again of the Green
integral formulae together with the boundary conditions expressed by Equa-
tions (13) and (14), one may obtain:
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5 9x(P) = [Pr(Q). 7. Vo(P,0) .dSa ~ [ Vpr(0) . 0(P,Q) .dSa  (20)

for every P that belongs to I'u. In Equation (20) the function w(P,Q) is the
fundamental solution associated with the bidimensional Helmholtz problem:

w(P,Q) = %.HE(k .TPQ) (21)

Hj} being the Hankel function of the first class and zero order.

If P lies within I'y however, the coupling conditions establish the
following relations:

or(P) = p(P) — p(P) _ (22)
n.Vor(P) = A —n.Vp(P) (23)

In Equation (23) the unit vector n represents the outer normal along
I'u from the region Qu; in Equation ( 20) instead, it represents the outer
normal along I'y from €. The relation between both of them is given by:

ng = —ng (24)

Bearing this in mind and substituting the Equations (22) and (23) in Equation
(20), it can be obtained:

2-0(P) + [P(Q) 7. Vo(PQ) .dSa — [1.0(P,Q) . dSe =
- - T (25)
2oy + o(P). 7. Vo(PQ) .dSa ~ [7. V4(Q) . 0(P,0). dSa

for every point P on I'.

Let u#(P) a member of the H *(T'y) class of functions; multiplying
formally Equation (25) by u(P) and carrying out an integration over I'y the
following can be obtained:
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%lf P(P) .u(P) .dSe + [ u(P) X

x [p(Q) .71 . Vo((P.Q) . dSo dSe ~ [ u(P) [ 1. w(P,Q) dSq dSe =
i T, L. (26)
- %rfﬁ(P) H(P).dSe + [ u(P) X

x [ 9(Q) .7 . Vo (P,Q) . dSo dSp — Jup fn. Vo (0) w(P,Q) dSq dSp

for every P on I'y.

Combining Equation (19) with Equation (26) the problem can be
formulated in the following way: to find out (¢,A) that belongs to
H'(Qu) X H™"(T'y) such that Equation (19) can be satisfied for any function
v of HY(Qu) and Equation (26) for every function # of H™"(T'y). These
equations are the starting point for the formulation of the coupled finite-ele-
ment - boundary element method.

APPROXIMATE SOLUTION

Let us consider a regular triangulation of Qu : Tw = {T7}. If h repre-
sents the diameter of the circle that circumscribes the greatest triangle, the
discretization process partitions I'y in segments whose length is at most 4. Let
us consider then the partition Sy = {S} of the boundary I'y.

Let V, be the set of all the continuous functions ¢; which are polyno-
mials of degreem = 1ineach T'thatbelongsto Ti. If M represents the number
of elements of the triangulation network, an approximation ¢ of ¢ can be
developed by means of:

M
Pn = D 0. @i (27)

witha;, i = 1, ..., M being constants.

Let Hy, be the set of all the continuous functions 4; which are polinomials
of a degree smaller thanm in each S that belongs to Sn. Provided that N is the
number of segments of the partition, an approximation 4, of 4 can be
developed in the following way:

ﬂ.h = g ﬁi .lli (28)

with B, i = 1, ..., N being constants.
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We can establish the following approximate problem: to find out
(¢n , An) that belongs to Vi, X Hy, such that

—fc.cg. Von .V .dQ + [w?.%E oy v.dQ +
Q Q ¢

_ : (29)
+ Jc.cg.n.Von.v.dS + Jc.cg.An.v.dS = 0
BCD T,
holds for every v that belongs to V', and
1
zrf ¢on(P) .u(P).dSp + r,[/t(P) X
X [on(P).n.Vo(P,Q).dSqdSe — fu(P) [ in.w(P,Q)dSqdSe =
r. T, T, (30)

= 31 9P).u(P) . dSe + [u(P) X
x [ 9(Q).n.Vo(P,Q) . dSqdSy - [ u(P) Jn.Vp(Q) o(P,Q) dSa dSe

holds for every u that belongs to Hy.

In this approximate problem, let us take: v = ¢;andu = A;. Then, an
algebraic equation system from Equations (29) and (30) can be obtained
making it possible to obtain the coefficients a;,, i = I, ..., M together with g;,
i = 1, ..., Nwhichlead to the solution of the problem. It must be denoted that
this formulation leads to non-symmetrical matrices.

RESULTS OBTAINED

The method described above was applied to situations where it is
possible to get an analytical or semi-analytical solution to the problem, always
within the limit of what is knwon as the long wave approximation.

Figure 2 shows the response of a rectangular port located on a straight
infinite coast subjected to incoming waves of different lengths. This problem
has been studied by several researchers from both the theoretical as well as
from the experimental viewpoint [4, S, 6]. As seen in that figure, the wave
amplitude exhibits a maximum for some of the modelled wave lengths with
corresponding frequencies which are denominated resonant frequencies of
the port basin.

It was also investigated the effect of the water depth on the response of
the basin when it is excited by long-period waves.
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Amplification Factor

|— Analytical Solution T Coupling Method I

Figure 2.- Reponse of a rectangular basin with constant water depth lo-
cated on a semi-infinite coast.

Amplification Factor

7.0

[—- Analytical Solution T Coupling Method J

Figure 3.- Response of a rectangular basin with linearly-varied depth lo-
cated on a semi-infinite coast.
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Figure 3 corresponds to the response of a rectangular basin with a
linearly-varied water depth. It must be denoted that in these two case studies
the basins have the same length, width and water depth at the entrance; the
resonant response curves are different however. Not only the peak magnitude
is much different but their frequency location is different as well. Therefore,
in order to estimate the resonant frequencies of a port it is not enough to
define the basin geometry, its bathymetric features must also be carefully
defined.

Looking at Figures 2 and 3, a simple comparison leads to conclude that
the agreement between the numerical and the analytical solutions is very
satisfactory. Comparisons with results obtained by other methods were also
made. Solutions obtained by a BEM model with indirect formulation, by a
FEM model, where the calculation domain must be compulsory truncated
using some criterion and the coupled method, where the boundary condition
at infinity is implicitly imposed were also carried out. These results, shown in
Figure 4, were obtained for the same partition of the basin perimeter and for
the same discretization of the enclosing region, something that highlights the
aptitude of the coupled method.

[¢}
~

Amplification Factor

0
0.0 1.0 2.0 3.0 4.0 5.0

F— Analytical Solution - FEM —TS - Coupling Method J

Figure 4.- Comparison of results obtained by different methods.

CONVERGENCE

Numerical experiments that were carried out with three-node trian-
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gular elements in order to interpolate the solution inside them and with C°
continuity elements to interpolate the normal derivative of the solution on
the transmitting boundary let us conclude that the method has a O(h) con-
vergence, h being the diameter of the circumscribing circle of the largest
element used in the discretization.

The variation of the computed error in the norm L, is presented in
Figure 5 as a function of the size of the elements used to determine the
response of the rectangular port basin with constant depth subjected to
intermediate-length incident waves. It can be clearly seen a linear decrease
of the error with an increase of the number of elements used in the discretiza-
tion. This result agrees well with theoretical results obtained by He Yinnian
and Li Katai [1].

05
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[} /-0
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g -0.54 0.496
:
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5
Kl
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241972 . . r
-0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60
Logarithm of max.size of elements, h
l M Computed values — Regression line l
Fig.5.- Variation of the computed error.
CONCLUSIONS

Despite of the fact that the variational formulation, that is the starting
point of the coupled method, makes it impossible to obtain symmetrical
matrices, the method used in this research work gives particularly useful
solutions when very simple elements are used in the domain discretization.

On other respect, as it includes into the formulation the boundary
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condition at infinity, there is no need to truncate the region using ambiguous
criteria.

A fundamental advantage of the method shown in the preceding sec-
tions lies on the possibility of making an a-priori estimation of the error
involved in the approximation.
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ABSTRACT

One-dimensional numerical tidal models are frequently used by
civil engineers. Whether the engineer is developing in-house
software or running a commercially available package, some form
of quality assurance testing needs to be undertaken so that
he/she can be confident that there are no errors in the
computer code. The practical operating characteristics of the
numerical scheme employed in the model also need to be
assessed.

The problem addressed in this paper is how should the
engineer check the veracity of the model output, bearing in
mind that exact solutions to the non-linear equations of motion
are not available? Four possible strategies are considered
involving the use of: field data, simplified analytical
solutions, laboratory data and alternative numerical solutions.
The advantages and disadvantages of these strategies are
discussed with reference to a set of numerical solutions for
the case of tidal propagation in a simple idealised estuary.

It is concluded that laboratory data offers the best source
of objective validation data, but difficulties remain with the
representation of frictional resistance.

INTRODUCTION

The propagation of tides in estuaries is frequently
modelled using a one-dimensional scenario in which solutions
are sought to the spatially integrated Navier-Stokes and mass
conservation equations. Since the one-dimensional equations are
non-linear, and also because natural estuaries are inherently
non-uniform, numerical solution methods are required to give
tidal elevations and flows throughout an estuary. The
successful  application of the numerical model is ‘critically
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dependent on the effort expended at the calibration stage. This
should include a study of: (1) the degree to which the
governing equations actually represent the physical processes;
(2) the spatial schematisation wused; (3) the characteristics of
the numerical scheme adopted; (4) the degree to which the
resistance and/or other coefficients are consistent with field
measurements; and (5) the application of the model to as wide a
range of tidal and fluvial conditions as possible.

During the development of the model it is important to
carry out some form of quality assurance testing in order to
eliminate errors in the computer code and to assess the
practical operating characteristics of the numerical method.
Also, it is a prudent measure to test the model over the full
range of tidal frequencies found to exist in the tidal response
of the estuary under study.

This paper considers the problem of how the modeller can
check the validity of the model output. The model results are,
after all, approximate in the sense that they are numerical
solutions of a pair of non-linear partial differential
equations for which exact solutions are not available. In
practical applications, of course, models can be calibrated by
tuning the friction coefficient such that the model output
"agrees” with observations. But this does not constitute an
objective check of the model.

What the modeller needs is an independent check to ensure
that the model is working correctly. One way of furnishing this
need is to run the model for idealised conditions for which
analytical solutions to the appropriately simplified equations
of motion are available.

Unfortunately, however, these analytical solutions are of
limited use in this regard because the idealised conditions
under which they apply nearly always include a linearisation of
the friction and/or advective acceleration terms in the
equations of motion. Thus the numerical treatment of, and the
computer code relating to, the mnon-linear terms cannot be
checked in this way.

An alternative source of independent data for model
checking is laboratory data. In theory, there is a good chance
of friction coefficients being known in the laboratory, but for
oscillatory flows the frictional behaviour of the boundary
layer depends on the frequency of oscillation, so that in
practice an adequate description of frictional losses may be
difficult to achieve wusing the same resistance equations as
those used for real estuaries.

One further way of checking a numerical model is to compare
its output with that of another numerical model. Although this
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is not ideal, because both outputs are only approximate
solutions, agreement would strengthen the belief that both
models were working correctly.

This paper addresses some of the ideas introduced above.
Firstly, we present one set of numerical solutions to the fully
non-linear equations of motion describing the tidal hydraulics
of a closed, horizontal rectangular estuary. The solutions were
obtained using the Preissmann finite difference scheme.
Secondly, we discuss the wuse of field data, analytical
solutions, laboratory data and alternative numerical solutions
to validate these results.

THEORETICAL BACKGROUND

The movement of water in the one-dimensional estuary under
consideration is described by the St. Venant equations (Cunge
et al [3]:

2

18Q + 19 [BQ” + AdH + At _ 0 a)

gat gox| A ax pgR

WoH + Q _ 0 ()]
at ax

where W=width of the estuary, H=water surface elevation above
the horizontal bed, Q=discharge, A=cross-sectional area of
flow, g=gravitational acceleration, t=mean bed shear stress,
p=water density, R=hydraulic radius, x=Ilongitudinal co-ordinate
direction and t=time. The origin of the co-ordinate system is
taken at the closed end (head) of the estuary and the mouth of
the estuary is at x=1, where l=estuary length. Ebb flows are
taken as positive. The momentum coefficient (8) in equation (1)
is set to unity everywhere, which in the absence of better
information is normal practice.

Solutions to equations (1) and (2) are sought under the
following boundary conditions: at the estuary mouth there is a
cosinusoidal variation of water surface elevation (of amplitude
a and period T) about the mean depth, h, and at the estuary
head there is no flow, so that the tidal oscillation is
reflected. The tidal response of the estuary is that of a
damped standing wave with high water at the mouth occurring at
a phase of 0° and low water there occurring at a phase of 180°.

NUMERICAL SOLUTIONS

Equations (1) and (2) were solved using the Preissmann finite
difference scheme (Abbott & Basco [1]; Cunge et al [3]; Liggett
& Cunge [10]; Samuels & Skeels [17]). The numerical
characteristics of this scheme are well documented, and it has
an excellent track record in computational hydraulics. The
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estuary case defined in Table 1 was chosen as a “"benchmark”
problem and numerical solutions were obtained over the ranges
of frequency and frictional resistance indicated by ol/c and
f/a, respectively. Here, o is the tidal frequency (=2#/T), c¢ is
the shallow water small amplitude ,wave celerity (=v(gh)), f is
a  resistance parameter (=27A°/(pQ°) =  Darcy-Weisbach
coefficient/4) and « is a geometrical parameter accommodating
the width to mean depth ratio of the estuary (=R/h, evaluated
at mean depth). ol/c was changed by varying the length of the
estuary and f/a was changed by varying the value of f: other
parameters took the constant values shown in Table 1. y is a
non-dimensional group (=(a/h)[c/(ho)](f/a)), see Knight [6].

Parameter Dimensionless Group
Mean depth, h=10m a/h=0.05
Width, W=200m
Geometrical parameter, c/(ho)=7092
a=0.909
Amplitude at mouth, ol/c=0.226 - 1.410
a=0.5m
Time period, T=12.5hr f/a=0.00033 - 0.0330
Length, 1=16 - 100km
Resistance parameter, w=0.117 - 11.7
£=0.0003 - 0.0300

Table 1. Details of the estuary benchmark case under study.

A substantial number of preliminary model runs were
undertaken in order to define the conditions under which the
numerical solutions were to be obtained. Based on these results
the following guidelines were adopted:

(1) A distance step of 4km was used in all cases. Hence the
number of space steps in the model increased as ol/c was
increased by lengthening the estuary. However, the spatial
representation of the wundistorted tidal oscillation remained
constant and approximately equal to 111 parts per wavelength.

(2) The temporal weighting parameter in the finite
difference scheme was set at 0.6.

(3) One iteration of a double sweep elimination procedure
(i.e. two passes) was used to solve the non-linear difference
equations at each time step.

(4) All runs were started at a high water condition of no
flow everywhere and a water surface elevation given by linear
theory (=h + a/cos(a(l-x)/c)).

(5) The convergence of any run was taken to have occurred
when the elevations of both high and low water at the estuary
head from successive tidal cycles changed by less than 2mm.

(6) The same time step was used for all simulations at a
particular value of ol/c. The size of the time step was
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determined by monitoring the convergence of the numerical
solution as the time step was successively halved from an
initial value of 450s (100 per tidal cycle). The same numerical
criterion as in (5) was adopted in order to determine the
largest time step that could be used, and at all values of ol/c
this was determined by the minimum friction case.

RESULTS

The results from the final runs are presented in Tables 2 &
3 and Figures 1 & 2. The error in the calculated levels is
estimated to be less than +5mm, however, the results have been
rounded to the nearest lcm since this is certainly the highest
order of accuracy expected in any practical application of an
estuary model. Similarly the peak velocities have been rounded
to the nearest lcm/s and all the phases are given to the
nearest degree.

LEVEL AMP | PHASE |VELOCITY | PHASE N
allc f v HW | LW HW| LW| EBB| FLO|EBB|FLO
(m) | (m) (0) |(0) |(m/s)(m/s) | (0) (o)
0.226 |0.0003 |0.12 [10.51 [9.49 (1.03 | O (180 {0.09 |0.09 | 94 |266 | 100
0.226 |0.0030 |{1.17 |10.51 |9.49 [1.03 | O |180 {0.09 [0.09 | 94 |266 | 100
0.226 (0.0300 [11.7 |{10.51 |9.49 [1.03 | O |180 {0.09 |0.09 | 97 (270 | 100
0.451 |0.0003 |0.12 |10.55 |9.44 (1.11 | O |180 {0.21 |0.21 | 97 {266 | 100
0.451 |0.0030 |1.17 |10.55 |9.44 {1.12 { O {180 {0.21 |0.21 |101 {270 | 100
0.451 |0.0300 |11.7 |10.58 |9.42 [1.16 | 7 |191 |0.20 |0.20 |115 {288 | 100
0.620 {0.0003 |0.12 |10.59 {9.37 [1.22 | O |180 [0.33 10.34 | 97 |263 | 100
0.620 |0.0030 {1.17 [10.60 [9.36 |1.24 | 4 |187 |0.31 |0.34 | 97 {259 | 100
0.620 {0.0300 |11.7 {10.62 [9.40 [1.21 | 29 |212 |0.27 |0.28 |112 (281 | 100
0.733 |0.0003 |0.12 |10.56 |9.23 [1.34 |345 |184 |0.46 |0.49 |114 |252 | 800
0.733 |0.0030 |1.17 |10.66 |9.30 [1.37 |357 {198 {0.36 |0.48 {106 267 | 800
0.733 |0.0300 [11.7 [10.61 |9.42 [1.19 | 45 {231 |0.32 |0.32 {107 (231 | 800
0.846 [0.0003 [0.12 |{10.91 [{9.38 |1.54 (358 |194 |0.56 |0.61 | 64 {292 | 800
0.846 10.0030 |1.17 [10.80 |9.27 |1.52 | 7 |203 |0.48 |0.57 | 83 |280 | 800
0.846 [0.0300 [11.7 |10.57 |9.46 |1.11 | 61 |247 |0.34 [0.34 [123 [307 | 800
0.959 [0.0003 |0.12 |10.96 |9.21 |1.75 | 2 |185 |0.68 |0.70 | 79 |283 | 200
0.959 {0.0030 {1.17 |10.89 |9.20 {1.70 | 18 |208 |0.63 [0.67 | 95 |288 | 200
0.959 |0.0030 |11.7 {10.52 {9.51 [1.00 | 74 {261 |0.35 |0.34 [137 {319 | 200
1.072 |0.0003 |0.12 {11.14 {9.04 (2.10 | 4 |185 |0.88 |0.89 | 85 [283 | 200
1.072 {0.0030 (1.17 {10.99 |9.11 |1.89 | 32 |221 |0.77 [0.78 [106 |299 | 200
1.072 {0.0300 (11.7 |10.47 |9.56 |0.90 | 86 |272 |0.35 [0.33 [146 [326 | 200
1.184 |0.0003 |0.12 |11.44 |8.79 [2.66 | 8 [190 |1.19 [1.19 | 87 1286 | 400
1.184 |0.0030 |1.17 [11.06 |9.05 [2.02 | 49 |238 |0.87 |0.86 121 ;313 | 400
1.184 {0.0300 {11.7 |10.43 |9.61 {0.82 | 96 |284 |0.34 |0.32 |151 |331 | 400
1.297 |0.0003 |0.12 {11.99 {8.35 |3.63 | 19 |202 |1.71 |1.68 | 95 |298 | 800
1.297 10.0030 |1.17 {11.07 {9.03 |2.03 | 68 |256 |0.94 |0.89 |138 |327 | 800
1.297 |0.0300 |11.7 |10.39 [9.64 |0.75 |106 {294 |0.32 |0.31 (155 |334 | 800
1.410 {0.0003 |0.12 }|12.78 |7.72 {5.06 | 49 |235 |2.50 |2.34 {122 {331 |1600
1.410 10.0030 |1.17 |11.02 |9.06 {1.96 | 85 |274 [0.94 |0.87 |153 [340 |1600
1.410 |0.0300 |11.7 |10.36 |9.67 [0.69 |115 |304 [0.31 |0.30 |158 336 |1600

Table 2. Numerical results at the head of the estuary.



154 Computer Modelling for Seas and Coastal Regions

Table 2 shows a selection of computed water levels and
phases of high and low water at the estuary head together with
the amplification of the tidal range (AMP) which is evaluated
as the range at the head divided by that at the mouth (1m). The
table also shows peak ebb and flood velocity magnitudes (ebb
positive, flood negative) and their phases, at a location 4km
inland from the mouth. We choose to present velocity data one
distance step inland from the mouth to facilitate the use of
the data with numerical schemes based on either a staggered or
a non-staggered spatial discretisation. The values of N are the
number of time steps per tidal cycle used in the simulations.

For two cases from the higher frequency range (i.e.
dimensionless frequency, ol/c > 1), Table 3 shows the
longitudinal variation of the level and phase of high and low
water, and the longitudinal variation of the magnitude and
phase of the peak flood and ebb velocity. This data will enable
model testing to be carried out at a number of locations along
the estuary. In the remainder of this paper, however, we
concentrate on the results at the estuary head.

LEVEL PHASE | VELOCITY PHASE
allc f 1 oxl/c
(km) HW LW | HW| LW |EBB FLO |EBB|FLO
(m) (m) [(0) |(0) |[(m/s) |(m/s) |(0) |(0)
1.072 [0.0030 0 |0 10.5 9.5 0 |180 {0.77 0.78 106 ({299
1.072 {0.0030 | 20 |0.282 [10.69 {9.36 | 22 {202 {0.67 |[0.79 |106 |299
1.072 |0.0030 | 40 |[0.564 [10.86 [{9.22 | 29 |214 |0.51 [0.55 |104 |295
1.072 |0.0030 | 60 |0.846 [10.97 [9.13 | 32 (220 (0.29 (0.32 |101 |288
1.072 |0.0030 | 76 {1.072 |10.99 {9.11 | 32 [221 [{0.05 |{0.05 99 284
1.410 {0.0030 0 |0 10.5 |9.5 0 |180 |0.94 |0.87 |153 {340
1.410 |0.0030 | 20 |0.282 |10.53 {9.49 | 46 (220 (0.87 |0.84 |157 |344
1.410 {0.0030 | 40 |0.564 |10.70 |9.37 64 (242 |0.75 0.77 156 ({344
1.410 |0.0030 | 60 [0.846 [10.86 [9.23 | 76 |259 |0.56 [0.62 |150 |338
1.410 |{0.0030 | 80 |1.128 |10.98 |9.11 83 {270 |0.35 0.41 143 (328
1.410 |0.0030 {100 |1.410 |11.02 |9.06 | 86 |274 |0.11 |0.13 |139 |322

Table 3. Numerical results along the estuary.

Figure 1 shows the tidal range amplification as a function
of ol/c and w, and Figure 2 shows the corresponding average
phase difference plotted in the same way. This average phase
difference is the average of the high water and low water phase
differences between head and mouth. Greater detail of the tidal
hydraulics can be gained by examining the tidal amplitude and
phase for high and low water individually, see Wallis & Knight
[20], but for our purposes here the main features are
adequately depicted by Figures 1 & 2 which show how the tidal
hydraulics are controlled by ol/c and .
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All three of the non-dimensional groups which contribute to
v may influence the tidal response. However, because a/h and
c/(ho) were kept constant the variations in i here are solely
due to changes in the frictional resistance. These results show
that when ol/c < 1 the frictional resistance has little effect
on tide levels, but when ol/c > 1 the resistance influences the
tide levels significantly. It is also noticeable that the
levels of high and low water are approximately independent of
ol/c when w > 4: phase differences, however, tend to increase
with increasing ol/c and . The behaviour of peak velocities
is broadly similar to that of tide levels.
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Figure 1. Tidal range amplification as a function of ol/c and yw
(for clarity, only 6 values of ol/c are shown).

An interesting feature of the results, which is more
noticeable in the phase data than in the levels, is the
occurrence of a weak resonance mode when the frequency is close
to m/4 (see also Knight & Ridgway [8]). The distortion in the
otherwise smooth trends in the results is damped out as the
resistance increases but is evident in the lower resistance
cases for ol/c = 0.733 & 0.846. From the values of N in Table
2, it is clear that the convergence characteristics of the
numerical scheme are also affected by this phenomenon.
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Figure 2. Average phase difference as a function of ol/c and w
(for clarity, only 6 values of gl/c are shown).

DISCUSSION

The numerical solutions presented here are believed to be the
most accurate ones available for the case study. They are
superior to analytical solutions because they retain the full
non-linear effects of the quadratic resistance term and the
advective acceleration term. The problem introduced earlier
remains however: how do we know that these results really are
solutions to the governing equations of motion?

Although a lot of care has been taken to ensure that in
practical terms the solutions have converged, only a check
against an independently obtained data set would be entirely
convincing. Four sources for such independent data have been
considered, namely: field data, analytical solutions,
laboratory data and other numerical solutions.

Field data is not particularly useful to wus here for a
number of reasons. Applying a one-dimensional numerical tidal
model to a natural estuary requires the modeller to estimate
the resistance coefficient in the dynamic equation at every
location included in the model. Since resistance coefficients
cannot be directly measured, their values are usually unknown.
Hence they have to be estimated, and when model results are
compared with measurements of, for example, water levels, the
modeller does not know whether discrepancies are due to errors
in the resistance coefficients, errors in the field data,
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errors introduced by a poor representation of the physical
processes in the model or errors in the model itself. Modellers
should also be aware that in estuaries with a large tidal range
to mean depth ratio, resistance coefficients show a dependence
on stage (Knight [7]; Wallis & Knight [19]) as well as varying
with location.

Analytical solutions are not ideal for model checking
because they only apply for special cases involving some
simplification of the governing equations of motion. This
usually takes the form of a linearisation of the friction
and/or advective acceleration terms in the dynamic equation.
And, indeed, in many cases one or both of them is deleted
altogether (Bowers & Lennon [2]; Ippen [4]; Lynch & Gray [11];
Needham [12]; Ostendorf [13]; Prandle [14]). Thus errors
associated with these terms in the fully non-linear model
cannot be identified by comparing model results with the
analytical solutions. One exception to this is the solution
presented by Proudman [15] which does retain the correct
non-linear nature of the non-linear terms. Inevitably, however,
the solutions are only valid when the non-linear terms are
"small”. Proudman’s solution is discussed at length in Knight
[5]1, Knight [6] and Wallis & Knight [20].

Laboratory data appears at first sight to offer a good way
of checking numerical solutions, and the authors have access to
such a data set from a previous study (Ridgway [16]; Knight &
Ridgway [8]; Knight & Ridgway [9]). The experiments are
described in detail in Ridgway [16].

Unfortunately, direct comparisons with the numerical
results is mnot possible because there are doubts over the
appropriate values of the Darcy-Weisbach resistance coefficient
and the estuary length, i.e the values of ¥ and ol/c are not
known precisely for the experimental data. The former doubts
are related to the effects of the tidal frequency on the
vertical and lateral velocity profiles in the estuary channel.
In particular this caused the frictional behaviour of the
channel to be somewhat different to that normally described by
steady flow resistance equations. The latter doubts concerned
effects due to a transition section in the apparatus.

Because of these inconsistencies, a comparison of the
numerical and experimental data is shown in the form of tidal
range amplification plotted against average phase difference
(Figure 3) because explicit evaluation of ¥ and ol/c is then
unneccesary. Clearly, even allowing for the uncertainties in
the experimental data, they lend considerable support to the
numerical results.
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6 Experimental results, (Ridgway, 1975) Numerical results
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Figure 3. Comparison of numerical and experimental data.

It is apparent that when plotted in this way the data form
a family of lines of constant al/c. Indeed, the laboratory
data show that data of this type fall on a wunique curve for
each value of ol/c regardless of mean depth, tidal amplitude or
roughness (Wallis [18]). This is discussed at greater length in
Wallis & Knight [20] but it is clear that such a graphical
reprlesentation offers a novel and objective method of comparing
tidal data.

Numerical results obtained previously for similar cases
(Wallis [18]) also lend strong support to the numerical results
reported here. A fully implicit and a central implicit
staggered finite difference scheme were used. Direct comparison
with the results presented here is not possible, however,
because the discretisation grids are incompatible.
Nevertheless, allowing for this and the differing quantities of
numerical damping in the schemes, all the results are entirely
consistent.

CONCLUSIONS

__ Numerical solutions have been presented for the case of
tidal propagation in a parallel sided, uniform, horizontal
estuary of rectangular cross-section.

Four methods of objectively assessing the veracity of these
results have been considered. Laboratory data have confirmed
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the numerical solutions to a large extent, but primarily
because of inconsistencies between the representation of
frictional resistance in the numerical and physical estuaries,
the comparison, though good, is rather imprecise. By plotting
the data in the form of tidal range amplification against phase
difference, however, the agreement is evident.

Analytical solutions, field data and alternative numerical
solutions are not as wuseful as laboratory data for validating
numerical model results. Analytical solutions, by their nature,
require certain simplifying assumptions which affect the
non-linear terms and hence reduce the usefulness of the
solutions. Applying a model to a natural estuary and using
field data does not actually help to check a model because it
is not possible to identify the source of discrepancies between
measured and computed values: are the friction coefficients
wrong, are there errors in the field data or are there errors
in the model? Alternative numerical solutions can offer
support, but since these too are approximate, the modeller is
limited in his ability to favour one set of results in place of
another.

The numerical solutions given in Tables 2 & 3 should be of
particular use to workers employing one-dimensional tidal
models, since they enable an objective quality assurance
procedure to be carried out. It is hoped that modellers will
compare their own solutions with those presented here.
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ABSTRACT

A depth-averaged hydrodynamical numerical model is developed to
investigate the tidal dynamics of the Arabian Gulf. Observed
tidal constituents are compared with the computed results and
are presented in tabular form. Chi square goodness of fit test
was utilized to compare the computated values with the
observed values. The existence of amphidromic points for all
the major partial tides are also noticed and reproduced by the
model.

INTRODUCTION

A computational algorithm for the solution of the shallow water
equations based on explicit finite difference scheme, is used
to reproduce the surface elevation and depth-averaged velocity
components in the Arabian Gulf (from 24°N to 30°N and 48°E to
56°E). It covers nearly all the major coastal areas of the
region. The bathometry of the gulf is reported in Lehr [1],
Koske [2], Hughes and Hunter [3], and Defence Mapping Agency [4].

Some of the major studies on the tides of the Arabian Gulf
are reported by Lardner et al [5], Evans-Roberts [6], Von
Trepka [7], and many others. Hunter [8] has reviewed the
literature on circulation and mixing process in the Gulf.
Lehr [9] has surveyed the literature on oceanographic modelling
and oil spill in the Gulf. Le Provost [10] has also reviewed
three Gulf tidal models.

Surface elevations are used to predict amplitudes and pha-
ses of the partial tides. Computer model is used to study four
partial tides My, Sp, Ky and 07 as these sufficiently describe
tidal dynamics of the area. The model is based on the shallow-
water equations, obtained from the three-dimensional hydrodyna-
mical equations by averaging over the depth.
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OBSERVATIONAL TIDAL DATA

The observational data on the tidal constituents along the
coastal area of the Arabian Gulf is obtained from the special
publication of the International Hydrographic Bureau in Monaco.
There are quite a good number of the coastal gauges on the
Southern Coast of the Gulf. The northern coast of the Gulf
that is the Iranian coast and the interior of the Gulf is less
observed. The available data is given in Table [1].

Tides 1in the Gulf are wmixed in nature. They are
classified by using the ratio of the amplitudes of the two main
diurnal constituents K; and 0; to that of the two main semi-
diurnal amplitudes Mo and Sp. The ratio is known as "form
ratio", Pond and Pickard [11].

FatY
M2 + 52

F =0 to 0.25 Semi-diurnal tides, mean spring range =
2(My + Sp).

F =0.25 to 1.5 Mixed, mainly semi-diurnal tides.

F =1.5 to 3.0 Mixed, mainly diurnal tides, mean spring
range = 2(Ky; + 01).

F > 3.0 Diurnal tide.

MATHEMATICAL MODEL

Mathematically the tidal propagation is described by the
quasi-linear hyperbolic partial differential equation, with
necessary initial and boundary conditions. Since the water
movements are mainly horizontal and the horizontal dimensions
are much greater than the depth, the system of equations has
been simplified to a two-dimensional system. Vertical struc-
ture is included as the system is averaged over depth. Effect
of the Earth's curvature is taken into account by considering
the depth averaged equations of motion and continuity in
spherical polar coordinates as follows:

3z 1 a(HU) | & -

3t © R cos¢ A yeni 3¢ (HV cosg) ] = 0 (2)
U 1 A 2 g9 L
3t-QV+HTb-AhVU+RCOS¢ T (3)
v 1 ¢ 2y 4 1 Bz

T - Wy - A VVrg 5=0 (4)
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Table 1: Continued

No. PLACE Position M2 S2 Ky 0y F
N E a 3 a 3 a P a K
o L ° 1]

49 Zellaq 26.03 50.29 4.9 312.0 2.1 33.0 1.2 176.0 1.8 92.0 0.42
50 Jabal Fuwairat 26.03 51.22 42.4 160.0 13.1 208.0 20.1 114.0 9.4 56.0 0.53
51 Ruwais Inshore 26.09 51.13 51.0 144.0 18.0 192.0 15.0 65.0 8.0 350.0 0.33
52 Sitra 26.10 50.40 66.0 174.0 18.9 240.0 9.8 47.0 6.1 320.0 0.19
53 Ruwais Offshore 26.10 51.11 54.0 144.0 19.0 196.0 15.0 64.0 7.0 343.0 0.3
54 Khasab Bay 26.12 56.15 67.0 312.0 22.0 359.0 22.0 68.0 16.0 71.0 0.43
55 Sibi Isthmus 26.12 56.24 67.0 316.0 25.0 4.0 22.0 78.0 16.0 70.0 0.41
56 Habalain Ghubbat 26.12 56.24 73.0 288.0 27.0 335.0 34.0 43.0 18.0 41.0 0.52

Al Gahazirah,
57 Manamah Anchorage 26.14 50.35 66.0 152.0 22.0 195.0 10.0 22.0 12.0 318.0 0.25
58 Mina Salman 26.14 50.36 66.1 152.2 21.8 213.4 7.1 43.6 4.8 332.1 0.13
§9 Jazirat Farur 26.15 54.31 45.1 3.0 15.2 43.0 37.5 140.0 22.3 92.0 0.99
60 Jezirat Tunbh 26.16 55.18 59.1 336.0 20.1 17.0 29.3 120.0 18.9 89.0 0.61
61 Bahrain Approach 26.22 50.47 63.0 170.0 20.0 222.0 9.0 70.0 7.0 324.0 0.19

Beacon
62 Khor Kawi 26.22 56.22 68.9 309.0 25.3 347.0 26.2 70.0 15.8 67.0 0.45
63 Little Quoin 26.28 56.33 76.8 301.0 27.4 341.0 28.7 60.0 20.4 51.0 0.47

Island
64 Bander Lingeh 26.33 54.53 59.7 346.0 22.6 27.0 32.6 127.0 21.9 89.0 0.6
65 Tarut Bay 26.39 50.22 54.0 182.0 17.0 249.0 12.0 10.0 9.0 323.0 0.3
66 Ras At Tannura 26.39 50.10 59.5 129.4 19.8 187.9 14.4 339.3 11.6 280.3 0.3
67 Henjam 26.41 55.54 73.8 320.0 25.0 7.0 29.0 88.0 20.4 70.0 O.
68 Jazirah Ye Lavan 26.48 52.23 33.0 73.0 12.0 111.0 30.0 145.0 16.0 114.0 1.
69 Jazirat Shaikh 26.48 53.23 30.0 76.0 12.0 115.0 29.0 147.0 15.0 104.0 1.0

Shuaib
70 Ras Al Qulayah 26.51 49.54 43.0 123.0 16.0 183.0 18.0 319.0 10.0 260.0 0.4
71 Bandar Abbas 27.11 56.17 100.0 298.0 36.0 334.0 33.8 64.0 20.7 52.0 O.
72 Berri Dawhat 27.13 49.43 44.0 124.0 16.0 197.0 17.0 318.0 14.0 269.0 O.

Abu Ali
73 Asalu 27.28 52.37 51.2 120.0 17.1 162.0 23.8 168.0 11.9 138.0 O.
74 Ras Al Mishaab 28.07 48.38 25.0 3.0 8.0 65.0 38.0 304.0 21.0 263.0 1.
75 Lavar, IRAN 28.15 51.16 49.7 169.0 17.7 222.0 25.3 262.0 18.0 220.0 O.
76 Ras-Al-Khafji 28.25 48.31 32.7 342.5 11.6 50.8 42.3 301.0 21.6 262.4 1.
77 Mina Saud 28.44 48.24 42.0 336.0 14.0 34.0 43.0 305.0 27.0 259.0 1.
78 Bushire 28.54 50.45 33.7 8.1 12.3 54.5 30.7 174.6 20.4 140.4 1.
79 Mina-Al-Ahmadi 29.04 48.10 62.7 335.0 16.8 42.0 42.9 308.0 28.7 257.0 O.
80 Kharg Island 29.16 50.20 36.4 250.2 12.8 301.4 38.8 285.6 25.7 241.2 1.
81 Shat Al Arab Bar 29.50 48.43 84.1 308.4 28.6 8.6 49.7 295.4 29.8 247.1 O.
82 Fao 29.58 48.30 82.4 337.1 25.3 39.2 43.8 315.5 25.4 267.8 O.
83 Warba Spit 29.59 48.09 126.2 343.3 43.0 57.4 66.1 306.3 31.4 263.8 O.
84 Khor Musa Bar 30.00 49.00 86.9 313.2 31.3 13.1 49.4 300.9 31.7 252.7 O.

Table 1: Amplitude a (cm), Phase k (degree) of the Major Tidal
Constituents, and Form Ratio F.
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If U(z) and V(z) denote the horizontal velocity components
at depth z below the undisturbed sea surface, then

1 z

U= - Ih u(z)dz (5)
1 [4

V = I {h v(z)dz (6)

(ré, rg) are the components of the bottom frictional

stresses and are parametrized emprically by a quardratic law
(G.I. Taylor [12]) relating bottom stresses to the depth mean

velocity

W= ruu? v2yl/2 (7)
b = rov? v v3)l/2 (8)

wherezr is a non-dimensional friction coefficient of the order
3x10-¢<.

The coefficient of horizontal eddy viscosity Ap is
directly proportional to grid size and inversely proportional
to water depth and timestep. Considering the Arabian Gulf as
shallow water body, the empirical value of the horizontal eddy
viscosity is .1x103 m2s-1,

The tide in the model is generated by prescribing amplitu-
des and phases of tidal constituents at the open boundary.
Water levels as a function of time for each partial tide are

computed by
z(t) = A cos(ot - «) (9)

where A is amplitude, « is phase of incoming tide and ¢ is fre-
quency.

The Coriolis force q results from the fact that our
reference system is fixed to the earth, but the earth itself is
moving through the space. The effects in the horizontal plane
are considered only.

Q= 2w sing (10)
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INITIAL AND BOUNDARY CONDITIONS

The solution of the system of equation (2-4) requires the
knowledge of initial and boundary conditions. There are two
types of boundary conditions:

1. Solid boundary (coastal line)
no-slip condition
Uu=VvV-=20

2. Open boundary (supposed joining line of the Gulf with the
Arabian Sea).

Waterlevels are prescribed at every time step wusing
Eq.(9). Moreover, the velocity gradients in the normal direc-
tion are zero.

As initial condition the values of waterelevation and
velocity components are taken to be zero at t=0.

NUMERICAL MODEL

The system of hyperbolic partial differential equations
(2-4) along with initial and boundary conditions can be trans-
formed into a system of explicit finite difference equations by
replacing the space derivatives by the central differences and
time derivatives by forward differences. The system of expli-
cit finite difference equations thus obtained is given in Elahi
[13], and is solved numerically by using the hydrodynomical-
numerical method. The area is covered by the spatial mesh of
39x54 computational points. The grid size is .167° = 18 Km.
Programs were written in FORTRAN IV. Computations were done on
personal computer PC-AT 368 with RM/FORTRAN compiler. The per-
sonal computer includes the Math Coprocesser 80387 and a hard
disk of 40 Mg. Graphic work was done by using GEOGRAF VER 4.0.

RESULTS AND ANALYSIS

Tidal elevations are plotted in the form of the tidal
charts for Mp, Sp, Ky and 01 and are given in Fig. 1,2,3 and 4
respectively. Special feature of the tide in the Arabian Guif
is the existance of amphidromic points for all the major tides.
Two amphidromic points appears in case of the semi-diurnal
tides My and Sp. One amphidromic point appears for each diur-
nal tide K; and 0y. Location of the amphidromic points is the
position of zero amplitudes
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Tide Location of Amphidromic Points
Mo 28°.15"' N , 49°.39' E
25°.00"' N , 53°.10"' E
So 28°.25' N s 49°,10' E
25°.00' N R 53°.02"' E
K1 26°.57" N R 50°.40"' E
01 26°.50"' N , 51°.10" E

The locations of the amphidromic points for My, Sy and Kj
tides are compared with the charts constructed from experimen-
tal observations of tidal heights [14] and these are in reaso-
nable agreement with each other. Patterns of the co-tidal and
co-phase lines are also quite similar. Results are also com-
pared with the observational data of IHO Tidal Constituents
Bank [15] at 18 different tidal gauges around the coast of the
Arabian Gulf (Table 2). Around the coast of Bahrain the degree
of accuracy of the results is not very encouraging, whereas in
the rest of the Arabian Gulf, amplitude and phases are repro-
duced with maximum error of * 10 cm, and + 5 deg. respectively.

The Chi-square goodness-of-fit test has been applied to
asses the accuracy of the computed values with the observed
values. The results of this test are shown in Table 3. It is
evident that all the models fitted very well and the computed
results are not statistically significant from the observed
values.

P-value (d.f.) Significance

My tide

Amplitude 0.99 (32) not

Phase 0.99 (32) not
Sp tide

Amp1i tude 0.59 (33) not

Phase 0.47 (34) not
Kq tide

Amp1itude 0.72 (34) not

Phase 0.99 (34) not
01 tide

Amp1itude 0.94 (36) not

Phase 0.99 (36) not

Table 3 Chi-square goodness-of-fit test results.
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No.

PLACE Position Mo S2 Ky 01
N E 0 C C 0 C 0 C
o 1+ o 1
1 FAO 29.58 48.30 82.4 85.6 25.3 27.01 43.8 47.4 25.4 28.9
337.1 333.6 39.2 39.6 315.5 313.8 267.8 263.0
2 Shatal Arab Bar 29.50 48.43 84.1 74.7 28.6 27.5 49,7 49.3 29.8 28.2
308.4 319.4 8.6 12.8 295.4 301.7 247.1 255.9
3 Kharg Island 29.16 50.20 36.4 37.9 12.8  16.5 38.8 43.0 25.7 21.7
250.2 253.7 301.4 305.2 285.6 276.8 241.2 232.1
4  Mina Saud 28.44 48.24 42.0 45.2 14.0 15.6 43.0 39.8 27.0 23.8
336.0 337.6 34.0 26.1 305.0 310.1 259.0 261.3
5 Berri 27.13 49.43 44.0 34.0 16.0 13.8 17.0 16.9 14.0 11.9
124.0 127.9 197.0 191.8 318.0 313.8 269.0 271.4
6 Munifa 27.35 48.54 22.0 17.3 8.0 6.4 31.0 24.3 21.0 15.4
100.0 105.0 167.0 172.2 316.0 313.7 267.0 270.5
7 Asalu 27.28 52.37 51.2 53.1 17.0 21.5 23.8  33.1 11.9 13.6
120.0 115.5 162.0 162.5 168.0 170.5 138.0 134.3
8 Ras Al-Tannora 26.39 50.10 59.5 55.7 19.8 17.0 14.4 11.9 11.6 9.9
129.4 132.0 187.9 193.0 339.3 337.6 280.3 285.6
9  Henjam 26.41 55.54 74.0 73.0 25.0 28.6 29.0 31.3 20.4 19.5
320.0 323.4 7.0 5.4 88.0 94.7 70.0 71.8
10 Bander 26.33 54.53 59.7 58.7 22.6 24.1 32.6 35.9 21.9 19.8
346.0 351.5 27.0 34.5 127.0 123.8 89.0 88.3
11 Sibi Isthmas 26.12 56.24 67.0 67.7 25.0 26.9 22.0 18.5 16.0 15.6
316.0 313.7 364.0 355.5 78.0 77.0 70.0 68.1
12 Bandar Abbas 27.11 56.17 100.0 97.0 3.0 35.1 33.8  34.7 20.7 22.6
298.0 310.0 334.0 340.1 64.0 70.6 52.0 57.7
13 Jazirat Sirri 25.54 54.33 39.0 43.8 14.5 18.6 2.5 32.5 17.6 17.8
350.8 356.5 39.1 43.4 137.1 138.8 87.0 94.9
14 Khor Khwair 25.58 56.03 54.0 58.0 20.0 24.4 13.0 16.8. 16.0 15.6
326.0 324.8 11.0 4.9 111.0 110.5 88.0 76.5
15 Ras Al Khajmah 25.48 55.57 62.0 62.4 20.0 23.03 21.0 21.7 16.0 14.9
326.0 319.1 10.0 8.2 89.0 94.4 84.0 80.4
16 Umm al Qaywan 25.22 55.23 44.0 44.5 17.0  19.2 23.0 23.8 16.0 15.1
353.0 347.7 39.0 31.8 144.0 153.3 102.0 97.7
17 As Shariqah 25.22 55.23 44.0 44.5 17.0  19.2 23.0 23.8 16.0 15.1
353.0 347.7 39.0 31.8 144.0 153.3 102.0 97.7
18 Port Rashid 25.15 55.16 44,2  43.19 15.9 19.0 22.0 26.0 16.0 15.5
353.1 351.47 41.4 35.0 151.0 156.9 97.3 99.5

Table 2: Comparison of Computed (C), observed (0), Key: Above
value represent amplitude a (cm) and below value
Phase (k) of the Major Tidal Constituents.
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Notations

u,v components of vertically averaged velocity in the
and ¢ directions, resp. [ms-1]

z water elevation [m]

Ap coefficient of horizontal eddy viscosity [m%s-1]
g acceleration due to gravity [ms-2]

h mean water depth [m]

H = h + g(actual depth) [m]

r bottom friction coefficient

R radius of the Earth [m]

t time [s]

Xs¢ geographical longitude and latitude
w angular velocity of the Earth's rotation [s-1]

v horizontal Laplacian operator [m-2]
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Fig. 1: M, - tide in the Arabian Gulf. Co-range lines (

) in cm
and co-tidal lines (- - -) in degree.
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ABSTRACT

Numerical modelling of tidal hydrodynamics in coastal seas has
reached the level where it is now possible to obtain very
reliable predictions of tidal currents, flows and water levels.
The application of a nested computational technique allows for
tidal motions in the coastal waters to be solved up to a
reasonable degree of resolution. The technique involves an
in-depth study of the selected sub domain in the overall
problem domain utilizing the boundary data generated from a
global/regional model covering a much larger area. This has
been made possible on the PC due to the spectacular development
in speed, memory capacity and reliability of such computers.

This paper describes in detail the development of a regional
spatially two-dimensional numerical tidal hydrodynamics model
(1km x 1km grid) involving an alternating explicit and implicit
finite difference method suggested by Stelling (1984). The
regional model is rigorously calibrated and validated using a
14 day spring-neap cycle of tidal levels and current
measurements obtained from several field stations. A finer
grid nested model 2DEAST (with mesh size 125m x 125m) is also
developed using the boundary data generated by the regional
model. The finer grid model is further validated with recent
field measurements and the results of the simulations and field
experiments are presented.

INTRODUCTION

Singapore lies in a low wave energy environment being protected
by the Malaysian peninsula in the north, Sumatra in the west

and the Rhiau Archipelago in the south. The maximum wave
height recorded in the coastal waters is about 1 m with a
period of 2.5 to 3 seconds. (Chew, 1974). However, tidal

fluctuations in the Singapore Strait has been found to be of
the order of 2.5-3.0 m during springs and 0.7-1.2 m during
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neaps. These tidal occurrences are semi-diurnal with a strong
westerly stream and a strong easterly stream within a day.
Velocities of the associated tidal streams vary from about
0.5-1.0 m/s in the open waters of the Singapore Straits to as
much as 1.5-2.0 m/s in constricted channels between islands.
In view of the large variations in tidal elevations and the
associated currents in the coastal waters, careful evaluation
of tidal <characteristics has become essential for the
successful planning, design and implementation of large scale
coastal engineering developments such as land reclamation.

It is known that many numerical methods for the
approximation of the shallow water equations (SWE) have been
developed and well documented in the 1literature. One of the
leading and efficient finite difference method (FDM) for
practical problems of SWE is the method proposed by Leendertse
(1967). A method which has been reported to be stable, robust
and accurate 1is the finite difference scheme developed by
Stelling (1984). The numerical model presented in this paper
is based on the numerical scheme introduced by Stelling (1984).

NUMERICAL MODEL

The governing SWEs referred to a rectangular coordinate system
with x and y as horizontal axes are given as follows:

2 2,172

%E + ug—:: + vg—u - fv + g-g—f( + gu ________(u2+ v) - vPu = F¥ (1)
y c?(d+Q)

2 2,1/2

g% + ug% + vg—v + fu + gg—c + gv _—(u2+ V) vy = Y (2)
y y c?(a+¢)

8¢ . 8(Hu) 8(Hv) _

at " Tax T oy =0 (3)

where u,v = depth averaged velocity components in the x, y

directions respectively, ¢ = water elevation above a plane of
reference (mean sea level), d = water depth below a plane of

reference (sea bed profile), f = Coriolis force, v = eddy
viscosity, g = gravitational a?(geler(ation, C = Chezy
coefficient for bed resistance, F , F ¥’ = external forces

(eg. wind stress) in the x, y directions respectively.

The solution of Eq. 1 to Eq. 3 is achieved numerically using
an alternating direction implicit method. The finite
difference approximations are based on a fully staggered grid
scheme shown in Fig.1l where the integer indices "m" and "n" run
from 1 to the respective limits of the computational domain.
All space derivatives are approximated by central differences
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except for the cross-advective terms du/dy and 8v/3x, which are
approximated by a weighted central difference (explicit) and a
second order upwind difference (implicit). The complete forms
of the two-stage finite difference method are given below.
Verification of the stability conditions for this complete
nonlinear set of equations is very complex indeed and can only
be ascertained through experience.

In the computational scheme, for a variable A at node (m,n)
and time step k, the following nomenclature is used.

k k

A= [Am+1/2,n_ Am-1/2,n]/Ax (simple difference along X) (4)
k Kk .

Aoy = [Am,n+1/2 m,n—1/2]/Ay (simple difference along y) (5)

A% - [a¥ + A 1/ 2 (simple average along Xx) (6)
m+1/2,n m-1/2,n

A - [a¥ + A 1/ 2 (simple average along y) (7)
m,n+1/2 m,n-1/2

= K Kk K Kk

A= [Am+1/2,n+1/2 * Am—1/2,n+1/2 * Am+1/2,n-1/2 * Am-l/a,n—1/2] 4 (8)

Stage 1:

At (m+1/2,n)

u[0] - uk, Jo1 = vk, C[01 _ ck
forp=1, 2and q=1, 2, ... Q;

x = =]
[u[ql _ uk]/(t/z) + u[q] (ul:x) + Soy(‘-’“l/z’uk) _ fV1¢+1/2

+ gc::l + gu[q] [($k+1/2)2 . (uk)zll/z/(Csz)—v[ul:xx+ ul:yy]
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where
=k+1/2 k
S (v ,u) at (m+1s2,n) =
oy
=k+1/2 k k k
+ 4u -4u -u )/ (124y)
m+1/2,n m+1/2,n+2 m+1/2,n+1 m+1/2,n-1 m+l1l/2,n-2
(10)
=k+1/2 k+1/2 k+1/2 k+1/2 k+1/2
= + + )/4 (11)
m+1/2,n m,n+1/2 m+1l,n+1/2 m+1l,n-1/2 m,n-1/2
k k k k k 2
u = (u = [u ~2u + u )/ (Ax) (12)
oxXxX m+1/2,n oxx m+3/2,n m+1/2,n m+1/2,n
k k k k k 2
u = (u =[u -2 u +u )/ (Ax) (13)
oyy m+1/2,n oyy m+1/2,n+1 m+1/2,n m+1/2,n-1

At (m,n+1/2)

—_y _ _
(viPl - VX1 /(r2) o+ vkég[p]) +,S [, v sp+p’ )l + £ T

k =Kk k.2,1/2 2.k *
g2+ g™ EH2 + WOV - eiviTle VP20

oy 0OXX oyy

(14)
where
S:F (ﬁk,v[p],s) at (m,n+1/2) =
X
ﬁk [p-1+s] _ [p-1+s] + [p-1+s] 1/(24%)
m,n+1/2 m,n+1/2 m-1,n+1/2 m-2,n+1/2
. =K
>

if um,n+1/2 0 (15)
=k _ v[p-s] + [p-1+s] _ Ip-sl 17 2A%)
m,n+1/2 m,n+1/2 m+1,n+1/2 m+2,n+1/2
. =K
if U128 (16)
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s = [1+(-1)P"P"] (17)

0, if Yu*s0

p’'= mn (18)
1, if ¥ u* =0
m,n
Sk = (K - K Uk )/
m,n+1/2 m+1/2,n+1 m+1/2,n m-1/2,n m-1/2,n+1 (19)
* -1 —
V[ 1 - v[p +s] -2 V[p] . v[p sl )/(Ax)2 (20)
OXX m+l,n+1/2 m,n+1/2 m-1,n+1/2
2
viPl o (P! -2 vy + vy ax) (21)
oyy m,n+3/2 m,n+1/2 m,n—1/2
At (m,n)

(et - (er2) + oY (u:f) + B Y ol

ox

—_—x
+ u[q—l]c[q] . [Hkvk] =0 (22)
ox oy

Stage 2:

At (m+1/2,n)

u[01 _ k-:l/2 V[01 _ ijl/z C[0] - Ck+1/2
forp=1, 2and q=1, 2, ... Q;
—_— X
[u[pl _ uk+1/2]/(_’:/2) . uk+1/2(u[p]) . S+ [\7‘f+1/2u[f’]s(p+p’ )]
ox y
_ f3k+1/2+gc1:;1/2+ gu[p][($k+1/2)2 + (uk+1/2)2]1/2/(C2Hk+1/2)
-vld! v u®lr =0 (23)

oyy 0XX
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where
S (3“:’1/2 u[p],s) at (m+1/2,n) =
+y
=k+1/2 [p-sl [p-sl] [p-sl
- +
m+1/2,n m+1/2,n m+1/2,n-1 um+1/2,n—2]/( 28x)
=k+1/2
i >
if vm+1/2,n 0 (24)
=k+1/2 _ [p-l#s]+ [p-1+s] _ u[p—1+s] 17 2Ax%)
m+1/2,n m+1/2,n m+1/2,n+1 m+1/2,n+2
. =k
if v <0 (25)
m+1l/2,n
s = [1+(-1)P*P 1,2 (26)
k
0, if Z v >0
p»= m,n 27)
1, if v =0
m,n
=k+1/2 - k+1/2 + k+1/2 k+1/2 + k+1/2 )/4 (28)
m+1/2,n m,n+1/2 m+1l,n+1/2 m+l,n-1/2 m,n-1/2
* — —
u[ ] - [p-1+s] _ [p] [p-sl )/(Ay)2 (29)
oyy m+1/2,n+1 m+l/2,n m+1/2,n-1
u'Pl = (P! -2 ufP P )/ (8x)? (30)
oXX m+1/2,n+1 m+1/2,n m+1/2,n—1

At (m,n+1/2)

X

1/ =
[ql _ Vk+1/2 [q](vk+ 2) +S [ul,u-l Vk+1/2]

ox

[v 1/(t/2) + v

+ fl=1k+1 + gC:;] + gv[q][(3k+1)2 + (vk+1/2)2]1/2/(C2Hk*1/2)

k+1/2
v

k+1/2
- vl v ]
O

O0XX

+ =0 (31)
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where

=k+1 _k+1/2
S (u ,v ) at (m,n+1/2) =

=k+1 k+1/2 k+1
3 + + + +1/2 _ k+1/2 _k+1r2 )/ (12A%) (32)
m,n+1/2 m+2,n+1/2 m+1,n+1/2 m-1,n+1/2 m-2,n+1/2
=k+1 k+1 k+1 k+1 k+1

= + + +
m,n+1/2 (um-1/2,n+1 m+1/2,n+1 m+1/2,n um—l,n)/4 (33)
k+1/2 k+1/2 k+1/2 k+1/2 2

= - +

voyy vm,n-i'3/2 m,n+1/2 vm,n—l/z)/(Ax) (34)
k+1/
v +1/2 = k+1/2 _ k+1/2 " k+1/2 )/(Ax)z (35)
oXX m+1,n+1/2 m,n+1/2 m-1,n+1/2
[q] _ [q] _ »lal
S (IR e 17\ (36)
At (m,n)

k+1/2 -1 -1
SR s VIC 2 I S Coi IE A (o)

oy oy
tal k+1/2_k+1/2
+[v¥ h]l + [H u ] =0 (37)
oy ox

where
[q] _ [q] _ lal
Voy [vm,n+1/2 vm,n-1/2]/(Ay) (38)

At stage 1, Eq. 14 is an implicit equation and it is solved
column by column (y axis) proceeding along the dominant flow
direction of u. If the sign of u is constant, then Eq. 14 is
solved in one sweep, otherwise a second iteration is necessary
sweeping in the opposite direction. After Eq. 14 is solved,
Eq.9 and Eq. 22 are solved. Since these two equations are
coupled implicitly, they are solved simultaneously. By
substitution of Eq. 9 at nodes (m-1/2,n) and (m+1/2,n) into
Eq. 22 at node (m,n), the implicit equations are tri-diagonal.

At stage 2, Eq. 23 is implicit and is solved similarly as
Eq. 14. The coupled implicit equations Eq. 31 and Eq. 37 are
solved according to Egqs. 9 and 22. By solving Egs. 9, 14, 22,
23, 31, and 37 in the sequence Egs.14, (9 & 22), 23, (31 & 37),
the computer implementation needs only one array per dependent
variable (u,v,) and one working array of the size of the
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member of "Z points" of the grid.

Two different types of boundary conditions are encountered
in the computational domain. A closed boundary is referred to
physical or existing land-water boundary for which the velocity

component normal to it is taken to be zero. An open boundary
is a water-water boundary Jjudiciously chosen to restrict the
extent of the domain. The boundary conditions are

mathematically given by

u = £Y(t) for a velocity boundary (39)
= fc(t) for a water level boundary (40)
u =0 (41)
B(UV/)/an =0 (43)
where u, u = velocity normal and parallel to the open

boundary respectively, f(t), fc(t) = velocity and water level
at the open boundary.

APPLICATION
Regional Model

The testing of 2DTIDFLO commenced with the establishment of the

regional hydrodynamics model. The computational domain of the
regional model covers an area of 107 km by 72 km with a grid
size of 1km as shown in Fig.2. The model calibration and

verification processes were carried out based on 14 days
spring-neap tidal cycle involving field measurements in August
1978. The calibration period covered the spring tide
conditions between 1200 hrs 5 August 1978 to 0000 hrs 8 August
1978 whilst the verification period covered the neap tide
conditions between 1000 hrs 12 August 1978 to 2200 hrs 14
August 1978. The calibration process involved a series of test
runs with adjustments of the Chezy resistance coefficient C,
the eddy viscosity coefficient and the numerical time step.
The model was operated with the water levels prescribed at the
four open boundaries with data supplied by the Port of
Singapore Authority (PSA). The optimum model parameters were
finally calibrated as follows:— Chezy C =65 m'’%/s, eddy
viscosity v = 10 m /s and At = 10 minutes.

Six tidal stations and three current stations with
continuous field recordings were used to examine the numerical
results. The locations of these stations are shown in Fig.2.
The results of the computed water surface elevations are
depicted in Fig.3 to Fig.4. It can be observed that the



Computer Modelling for Seas and Coastal Regions 183

simulated and measured water surface elevations at all the
tidal stations showed very good agreement for the calibration
and verification runs. The magnitudes and the phase of the
water surface elevation were well simulated for the spring and
neap tide conditions. Minor deviations of tidal variation can
be observed from the comparisons of the results at station
Kepala Jernih. These discrepancies may be attributed to the
coarse grid approximation error near the Indonesian island
group.

The difficult part in the model calibration and verification
processes is that of achieving accurate simulation of tide
induced currents with regard to both magnitude and direction at
the selected stations. As can be observed from Fig.5 and
Fig.6, although good correlation 1is obtained between the
computed and measured currents at all the 3 stations, the
degree of agreement is inferior to that obtained for tidal
elevations. While the current directions are simulated
satisfactorily, the computed magnitudes are relatively lower
than the measured values. Possible reasons for this deviation
could be the coarse grid resolution and the association of
stronger current with mid-depth measurements as compared to the
depth averaged values obtained numerically.

It was found in the calibration runs that current magnitudes
were relatively more sensitive to the Chezy parameter C than
the eddy coefficient v. An increase in the Chezy value would
lead to measurable increase in estimates of the current speeds.
The calibrated Chezy C of 65 appears to be consistent with
Manning sea bed roughness in the clayey silt range. The Chezy
C may be related to the Manning coefficient according to

C = 1/n H®

where n is the Manning n and H is the water depth. It 1is
obvious that a successful calibration will require a changing
Chezy C to reflect the varying bottom roughness due to changing
water depths. However, very little is known between Chezy C
and the form roughness offered by the sea bed variations.

The eddy coefficient is treated as a semi-empirical factor
describing the effects of non-uniform vertical velocity
distributions and is kept low to fulfill the requirement of the
nearly horizontal flow assumption. Because of its
insignificant influence wupon the _computed water level and
current magnitudes, a value of 10 m /s was adopted. This value
posed no numerical difficulty for the present coarse grid-
large time step regional model.

Simulation runs were also carried out on a set of input
tidal package and field measurements covering the period 0000
hrs 17 February 1987 to 1200 hrs 23 February 1987. The tidal
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level and current histories obtained are shown in Fig. 7a, 7b &
7c. It can be observed that the computed water levels compare
very well with the measurements taken at Tanjong Pagar
Terminal. However, the simulated tidal currents at CUR2 and
CURS show a consistent under-estimation. Good agreement of
current directions are observed. Fig.8 shows the velocity
field in the coastal waters of Singapore at 2100 hrs, 5 August
1978.

Nested model-2DEAST

Following the successful simulation with the coarse grid
regional model, a nested model 2DEAST is established within the
2DTIDFLO so that a more detailed picture of the tidal streaming
pattern can be obtained. 2DEAST encompassed an area 24km x 12
km covering the southeast coast of Singapore coastal water as
shown in Fig.2. A grid size of 125m x 125m is used to obtain a
better discretization of coastline geometry and sea bed
bathymetry. During the execution of the numerical nested model
2DEAST, no further adjustment of numerical coefficients were
needed. Although it would be reasonable to reduce the
magnitude of eddy coefficient in the finer grid model for
similar dispersion representation as in the coarse grid model,
the reduction in the value has been found to have very small
effects in the results.

Figs. 9a, 9b & 9c depict the time history output of 2DEAST.
In Fig. 9a, the comparisons between the computed water levels
in 2DTIDFLO and 2DEAST and field measurements show excellent
correlation. The results also portray a consistent agreement
with the regional model simulated currents for both magnitude
and direction. (Figs. 9b & 9c) Circulation pattern around the
southern coastal waters for a certain tidal phase is also shown
in Fig. 10.

CONCLUSIONS

A numerical model for tidal hydrodynamics has been developed
and successfully applied to Singapore coastal waters. The
finite difference method proposed by Stelling (1984) has proven
to be a suitable choice in view of its state of the art
modelling techniques and 1its excellent performance in
simulating the tidal behaviour in the coastal regions of
Singapore.

The good results obtained from the regional and nested model
simulations undoubtedly indicate that the model is capable of
predicting the characteristics of tides and currents in a
coastal region with complicated geometry. Considering the
required computational labour per timestep and the adaptability
of the method for large timestep integration without numerical
instability as demonstrated in the regional model simulations
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with At = 10 minutes and As = 1 km, the model is considered to
be efficient and sufficiently accurate for practical
application in coastal hydrodynamics modelling.
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SECTION 3: SHALLOW WATER CIRCULATION
AND CHANNEL FLOW
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ABSTRACT

A numerical model has been developed capable of
predicting tidal flows in the southern North Sea. The
model solves the depth-integrated equations of motion
using an implicit finite-difference scheme on body-
fitted coordinates. Viscous dissipation and
wetting/drying processes are represented in detail.
The calibration and +validation procedures are
presented and numerical results discussed.

INTRODUCTION

The southern North Sea basin contains a wide variety
of mobile bed forms, such as banks, waves, flats and

pits. Sediment movement near the East Anglian and
Dutch coasts is intimately connected to the prevailing
wave conditions and the tidal currents. In

particular, the role of residual currents in the
evolution of the East Anglian coastline has been
highlighted by Robinson [11]. Evidence for sediment
circulation patterns in the nearshore region has been
reviewed by Carr [3]. A complete picture of the roles
of tides and waves on sediment transport is yet to be
determined. The ©present paper describes the
development of a model designed not only to provide
tidal currents, but also to map the nearshore tidal
residuals along the Anglian coast.
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MODEL EQUATIONS

Attention is restricted to small domains, so that the
tangent plane approximation is wvalid. Vertical
variations in fluid density are neglected, so
stratification effects are not represented. At the
upper and 1lower fluid surfaces kinematic boundary
conditions are imposed, for zero advective flux. The
depth integrated continuity equation is then:

(Hp), + V. (Hp<u>) = 0 (1),

where H is total depth, p is density, u is fluid
velocity, t is time and angle brackets denote a depth
mean quantity.

Using the hydrostatic approximation, (see eg.
Pedlosky [9]), conservation of momentum implies:

(Hp<u>) +V. (Hp<u><u>) = =-HpgVn-%gH?*Vp-2HpoA<u>
+V.[H(<T>-p<u'u'>) ]+7.,~-7T, (2),

where T is the viscous stress tensor, 7, and T, are
boundary stresses, u' = u-<u>, g is the acceleration
due to the Earth's gravity, n is fluid elevation of
the free surface above zero datum and o is the Earth's
angular velocity. Atmospheric pressure 1is assumed
uniform over the model domain. Now assume an enhanced
viscosity tensor, I', may be defined, such that

r.(V<u>+(V<u>)T) = <7> - p<u'u'> (3),
where the superscript T indicates matrix
transposition. Equations (1) and (2) are closely

analogous to the equations governing flow of a
compressible fluid, with variables transformed as

(p, u, p, 4) = (Hp, <u>, n, HI') (4),

where p is pressure and u is viscosity. The principle
difference is that the elevation gradient (cf. the
pressure gradient) is multiplied by the weight of the
fluid colunn. Also there are extra source terms
representing boundary stresses and density gradients.
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This analogy is the key to the solution strategy.
The base computer code is a well established, general
purpose finite-difference Navier-Stokes solver, (see
Burns & Wilkes [2]), with the following features: the
temporal discretisation uses unconditionally stable
backward differences; the equations are solved on a
boundary fitted, non-orthogonal, collocated grid,
using a coordinate transformation approach; and within
each time step the coupled equations are solved
iteratively using the SIMPLEC algorithm, modified to
account for the factor Hgp in the elevation gradient
term. The solution procedure then comprises iteration
of the following steps until a converged state is
reached:

i) solve equation (2) with horizontal components of
<u>,

ii) solve an elevation correction equation derived
from equation (1) assuming a linear relationship
(derived from equation (2)) between <u> and 1.

iii) update variables <u>, n and pH.

PHYSICAL PROCESSES
Wetting/Drving

The flow in the nearshore regions is of particular
interest and thus the wetting and drying of inter-

tidal areas must be represented. The following

algorithm has been developed:

1) impose a 1lower bound of 10%°kg/m? on areal
density Hp;

2) define a wetness function y to be zero if areal

density is not greater than zokg/mz, and one if
it is not 1less than 80kg/m*, with 1linear
variation in between; then impose zero velocity
if x < %;

3) if ¥ < 1 add a non-negative source term to the
elevation correction equation, such that the
nett mass outflow does not exceed the mass
available at the end of the preceeding time
step;

4) define cell face wetness %, as the wetness of the
neighbouring cell with the greater surface
elevation, then multiply coefficients of the
elevation correction equation by ¥¢;

5) use % as a weight factor when calculating the
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26-centred elevation gradient as a weighted mean
of 18§-centred values;

6) if x¢f < 1 suppress mass flow across cell faces
with adverse elevation gradients;
7) during the iterative solution procedure, apply

under relaxation to the wetness functions.

Bed Stress
The frictional force at the sea bed is assumed to be
related to velocity at the bed. For a quadratic law:

Ty, = Cplublub (5).,

where C is the stress coefficient and w, is fluid
velocity at the bed. The latter is evaluated using a
modified version of the spectral technique described
by Davies [4]. The vertical variation in velocity is
expanded as a cosine series:

u'(x,y,z,t) = L ay(x,y,t)cos(nk(z+h) /H) (6),

where a, are the series coefficients, x, y and z are
spatial coordinates and h is the depth of the bed
below datum. The following equations for the series
coefficients are now obtained, by multiplying the
three-dimensional momentum egquation by the basis
functions, then integrating:

5Hp (ax) . = -HpoNa, -3m’k’uH'ay - (-1)*1, -1, (7).

It has been assumed that advection and horizontal
shear are negligible, that effective viscosity for
vertical shear, uy, is independent of depth and that
p is uniform. This equation contains no spatial
derivatives and may be solved, after discretising the
temporal derivative using a backward difference, for
each horizontal component of each coefficient, in
terms of other flow variables which are either known
or become known as the iterative solution procedure
progresses. Equation (7) is solved for a finite
number of a,'s, (corresponding to vertical modes),
which are then used in (6) to calculate u,.

BOUNDARY CONDITIONS

The model is driven by tidal elevation and depth mean
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normal velocity, <u,>, prescribed at open sea
boundaries. The primary driving force is the tidal
elevation, the normal velocity being used to define a
radiation condition, (see eg. Davies & Flather [5]).
The boundary conditions are determined from a sum of
the five predominant tidal constituents: M,, S,, N,, O;
and K,. The Greenwich amplitude and phase of each of
these constituents were obtained from the Proudman
Oceanographic Laboratory (POL), from their British
Isles model, (see eg. Flather [6]). To illustrate the
procedure, consider the tidal elevation at a point
(x,y), this is given by

n(x,y,t) = L,Af;(ty)cos(e;(t,ty)+u; (ty) -g;) (8),

where A; and g; are the Greenwich amplitude and phase
of the i'th tidal constituent at (x,y), e; is its
instantaneous phase, f; and u; are the amplitude and
phase of the nodal modulation and t, is the instant of
local mean time corresponding to the central time t =
0 of the model run.

Two grids were prepared: a fine grid (394 x 104
cells), and a coarse grid (78 x 20 cells) which is
shown in Figure 1. In the coarse grid, at the start
of each time step, the summation equation (8) is
performed for 7n, and similarly for <u,>, for each of
the 75 boundary points (73 at the eastern boundary and
2 across The Channel). A second order accurate four
point bivariate scheme, Abramovitz & Stegun [1], was
used to interpolate the boundary data on to the body
fitted mesh.

The bathymetry is defined in terms of the mean
bed depth for each cell. Data was obtained from
Admiralty charts and nearshore bathymetric surveys.
The number of data points (in excess of 170000) was
large compared with the number of grid cells.
Thyssen's polygon method was used to determine average
bathymetry values.

CALIBRATION AND VALIDATION
Calibration and validation are two distinct steps in

a modelling study and they serve separate objectives.
Calibration is the process of tuning a particular
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model by altering various parameters in order to
obtain the best fit between modelled and observed
results for a specific problem. Validation is the
demonstration that the calibrated model provides good
results when compared against data which is
independent from that used in the calibration stage.

Calibration

The calibration procedure included changes to the bed
stress calculation and to the boundary conditions, but
specifically excluded any modifications to the
bathymetry or the use of viscosity. The bed stress
can be changed by altering the bed stress law (linear
or quadratic), the coefficient C (in equation (5))
and/or the number of vertical modes.

The calibration methodology was as follows:
Initially, only M, was used to drive the model. Both
bed stress and boundary conditions were altered until
satisfactory results were obtained. The bed stress
formulation was then fixed and calibration of the
remaining constituents was performed, adding one
constituent at a time, by altering the boundary
conditions only.

The above procedure relies upon quasi-linear
behaviour, to the extent that it will be most
successful when the addition of extra constituents
does not substantially alter the amplitudes and phases
of existing constituents. To this end, the
constituents are added in order of diminishing
relative importance; M,, S,, N,, 0,, K.

Model elevations and velocities were calibrated
against detailed spatial descriptions of each
constituent as prepared by POL [7]. Positions of
amphidromic points were well captured and constituent
amplitudes agreed to within 10% or better throughout
the model domain. The phases were in agreement to
within 10 to 15 degrees, except in The Wash and the
Thames Estuary. These are regions in the coarse grid
which are not well resolved in comparison with the
rest of the east coast. Tidal currents were
calibrated via tidal ellipse parameters, a very
stringent test. The maximum (major semi axis length)
was within 10% over the model domain for the two
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dominant semi-diurnal constituents. The direction and
phase of the maximum showed good levels of conformity
against the observational data. Comparison of the
minimum (minor semi axis length) was 1less good,
particularly near the Dutch coast where grid
resolution is poorest.

Calibration of the coarse grid was obtained for
quadratic bed stress law with two vertical modes and
a bed stress coefficient of 0.0025. The time step was
15 minutes, with the transition from wet to dry
beginning at a water depth of 8 centimetres and ending
at 2 centimetres. Horizontal viscosity, I', was zero.
The wetting/drying algorithm outlined above proved
reliable and exhibited negligible oscillatory
behaviour, see Figure 2.

Validation

Tide gauges were deployed at a number of sites along
the East Anglian coast for one month. Tidal velocity
data were gathered from ship-borne current meters.
Results from the measuring stations were compared with
those at the nearest model grid cell which remained
wet at all times. Figures 3a & b show a comparison,

typical of all constituents, of model and
observational elevation data for the amplitude and
phase of tidal constituent M,. If agreement were

perfect all the points (representing different
locations) would lie on a line inclined at 45 degrees
to the vertical. The #0.23m lines are marked on the
amplitude plot (corresponding to 10% for the largest
amplitudes), and the *15 degrees lines are drawn on
the phase plot. Agreement is good for results
predicted by a depth-integrated model. Locations at
which the largest discrepancies occur are in sheltered
estuaries, which are not well resolved by the coarse
grid, and where stratification may be significant.

Published data on experimentally determined tidal
residual currents is scarce. However, the residual
tidal currents computed over a 32 day period (Figure
4), agree well in both magnitude and direction with
previous numerical studies, eg. Nihoul & Ronday [8]
and Prandle [10]. These 1in turn were 1in good
agreement with observed residual flows and thus we may
infer that the present model is also in good agreement



204 Computer Modelling for Seas and Coastal Regions

with observations. Furthermore it provides an
improved description of the nearshore current
residuals through the body-fitted mesh and inclusion
of wetting/drying processes. A 32-day simulation
takes 48 hours CPU time on a Hitecl0 workstation.

DISCUSSION

A depth-integrated finite difference model has been
developed, calibrated and validated for tidal flow in
the southern North Sea. It includes detailed
representation of viscous dissipation and wetting and
drying, important in determining the characteristics
of near shore flow. The model has been used to
calculate tidally induced residual currents, from
which inferences can be made about the long term
sediment transport patterns along the East Anglian
coast.
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Modeling Man Made Channels Between Sea
and Coastal Lagoons

L. Traversoni

Unwersidad Autonoma Metropolitana, Iztapalapa,
Division de Ciencias Basicas e Ingenieria,

Departamento de Ingenieria de Procesos e
Hidraulica, Mexzico D.F., Mezico

ABSTRACT

Construction of artificial channels between sea and
coastal lagoons is a common practice in Mexico in order
to improve fisheries or for navigation purposes. However
consequences of such channels are still being studied.
Our model intends to be a practical contribution to this
subject and is devoted specifically to the channel itself
and its surroundings.

INTRODUCTION

Sand barriers separating coastal lagoons from the sea are
generally formed due to several phenomena the most
important of them are near shore sea currents interacting
with alluvial deposits coming from rivers.

When a channel 1is excavated opening a communication
between sea and the lagoon, natural equilibrium is broken
driving the whole system to an unsteady state that tends
to reach a new equilibrium point that can be restored to
the previous conditions or move to a new condition.
Generally, neither of them is convenient for men use so
unsteady conditions must be maintained. Trying to achieve
sucha purpose several actions are generally used such as
building barriers into the sea to protect the mouth of
the channel, reinforcing the sand walls .of the channel or
re-excavating it. Studies like building a physical model
are too expensive. Those actions are generally taken
empirically.
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FOCUSING THE PHYSICAL PROBLEM

We will assume some basic hypothesis emphasizing some
phenomena and neglecting others. The assumptions are :

1) Sea waves incident in the shoreline are the main force
acting in the model

2) Currents, due to such waves are mainly parallel to the
shoreline.

3) Other relevant currents are due to tides or to
periodical fluvial floods coming outland.

4) Sand characteristics are homogeneous in the zone.

The main phenomena to be modeled are then wave
refraction, reflection and diffraction; currents and
sediment deposition and removal.

MATHEMATICAL MODEL

As there are many empirical formulas which describe the
phenomena we choose- the most commonly used and
implemented them all in order the user can elect the one
he thinks suits the phenomena best.

Refraction

When the waves arrive to shallow waters refraction
deviate them to be parallel to the main bathimetric
lines, to calculate such deviation we use Snell law :

sina _ L _ Ca - tgh 2nd
sin «o Lo = Co g L

where :

« ....refracted angle
®0 ....incidence angle
Co ....celerity of the incident wave
Cd ....celerity of the refracted wave
Lo ....incident wavelength
L ....refracted wavelength
d ....depth

The energy of the wave will be calculated using the
relation :
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2 Lo
¥ Ho bo T

0} =

where :

Ho .... the height of the wave in deep waters
H ....the height of the wave in shallow waters
bo ....distance between two arbitrary stream lines before
refraction
b .... the same distance after refraction

Making some operations we obtain the formulas :

2
15 ke TRy

Ho bL

we name :
bo / cosao . < s
e = ———— = Kr refraction coefficient
b cosa

o = arcsen(C/Co sin a0) V Lo = Ks bottom coefficient

L
then
H = Ho Kr Ks
Diffraction

We use the well known formula by M. Larras ( A. Frias [1]
)

Ho = —F arcotg—gﬁ [ Hi - arccotg—§S ] e i/t
Hi 114 n n
where :
Hm ....height of the diffracted wave
r .... distance from the point being measured to the

source of the diffraction

211
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Sediment Transport

We also use other empirical formulas to calculate the
sediment transport

As there are many empirical formulas we implemented 1in
our program several of them in order the user can elect
one:

CERC Formula

S = A Ea
Where:
S = Littoral transport (m® /seg/m )
Ea = Eo Krbr sen¢br cos¢br
here :
2
Eo = 1/16 p g Ho Co
Krbr ....refraction coefficient
¢br ....angle between the top of the wave and the
shoreline
Ho ....height of the wave in deep waters
Co ....celerity of the wave in deep waters
A ....proportionality constant approximately 0.02

J. Larras and R Bonefille

Q = f(y0,D) H/T sin —% «

where
£(70,D) = 0.00175 [3500—2 11 70
4 10
D'+ 2

D ....grain size in mm
70 ....svetlex rate of the wave in percent

Q ....sediment volume m

T .... wave period in seconds
@ ....angle between the wave front and the shoreline

Bijker ( Delft [2])

Sb =BD V g s exp ( _0.274Dpsg ]

C H Tcw
in this case :

Sb ....sediment transport in the bottom (ma/m/seg)
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B ....addimensional coefficient = S
D ....average diameter of the sediment particles
g ....acceleration due to gravity
Vv ....average velo ity of the current
C ....Chezy coefficient
r ....bottom roughness
h ....depth
A ....sediment relative density

A = Ps—pPw
pPw

pw ....water density (kg/mg)

4 ....buckle coefficient = (c/c’)%?
C’ ....Chezy coefficient for Dso instead of r as in C
Tcw ....shear velocity under the combined effects of waves
and current

The idea is that in each particular circumstance one
formula could be better than the other for the user so he
can elect one or even put one due to himself.

THE NUMERICAL INTERPRETATION

No matter which of the different combinations of
empirical formulas we choose there is still the problem
of how to use them in a numerical environment, to do
this we must make some assumptions:

1) We are dealing with a local phenomena reduced to the
mouth of a lagoon (or of the channel communicating it
with the sea) and its surroundings.

2) Our main purpose is to simulate what happens with the
channel and the sand wall between sea and the lagoon, the
other related phenomena are simulated with other program
of which this is only a server devoted to calculate a
very important bordering condition.

3) Balance of sediment transport is one of the most
important problems to deal with because we assume that
changes happen very quickly and are very correlated; for
example an accumulation of sand means shallower
conditions and therefore increments in refraction and
even the beginning of diffraction in some places.
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Discretization

Always when we use numerical methods our continuous
phenomena must be discretized in order to make the
calculations, triangular and quadrilateral elements are
the most commonly employed when this happens. Neither of
them has been chosen by us, we switched to what we think
is a "smoother" discretization method because it improves
approximation : Covering Circles.

Covering Circles some definitions

If we have a set of points V in a plane ( for example in
our case the points where we have measurements of our
variables ); there exists a set € of circles we called
“Covering Circles" (Traversoni [3]1) such that:

1) Every point of V belongs to the circumference of some
circle of ©.

2) There is no point of V inside any circle of §.

3) Every circle of & can be determined by at least a set
of 3 points of V .

This concept is closely related with other well known, we
can note that the centers of the Covering Circles are
vertices of the Voronoi tiles of the set V and that every
Covering Circle circumscribes a Delaunay triangle.

When triangles or quadrilaterals are used all the zone
covered by them has the property that every point of the
plane on it belongs to one and only one triangle or
cuadrilateral, except in the case they are in the sides
or they are vertices. Knowing that when the value in a
new point is needed, we know it belongs to for example to
one triangle and we interpolate with the vertices of that
triangle if our interpolation is linear or with other
points, all belonging to the triangle if what we want is
cuadratic or higher order interpolation. Circles overlap
so a point in the zone may belong to several of them at
the same time, the question is then which one has to be
used . What at first could be considered a problem can be
used as an advantage using Sibson’s interpolation
(Sibsonl(4] ):

Sibson’s Interpolation

If we consider the set V and 1its related Voronoi
tessellation when a new point is added to V it forms its
own tile, the interception of it with the former
tessellation divides it in sections each one belonging to
a neighbor tile (see figure 1). When interpolation is
implemented the weight of each neighbor is the relative
weight of its portion of tile in the new one. This
approximation is continuous and quadratic (Farin (S]).
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Figure 1 the point P and its tile divided by the ones of
its neighbors

It is very important to note the fact that without adding

auxiliary points we obtain cuadratic interpolation doing

only simple operations as if we were doing linear

interpolation.

The relation of the above -with the Covering Circles are

1) Every vertex of the tiles is a center of a Covering
Circle.

2) Every circle such that its center is vertex of the
former tessellation has P inside.
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3) Every circle such that its center is vertex of the new
tile has P on its circumference.

It is also very important to note that with the same
algorithm we build the Covering Circles we can add new
points and, with only local modifications rebuild the set
of Covering Circles. That is very useful if we want to
refine our net, interpolating at one point and adding it
to the set V.

All the above has enormous advantages when we implement
computationally the building of the discretization and
when we wuse it for interpolation. However the most
important to us are the advantages when we apply it to
Finite Element Methods, and when we interpolate to obtain
refraction patterns of the waves because it allows us
smoother representations.

When Finite Element is used in the equation of a given
point P intervenes all its neighbors, understanding that
those neighbors are the points that belong to elements
that have P as vertex. Consider now that we are using
Delaunay triangulation as discretization, in that case
the neighbors will be the like the points belonging to
the same circumferences to which P belongs. As can be
seen, we can forget the triangulation and use the circles
for neighbor determination and later on as basis for
Sibson interpolation.

However in our case it is also useful for determining the
path of a particle floating with the waves under
refraction conditions that we will wuse to build the
perpendicular wave fronts.

On figure 2 we can see our graphical method for
refraction and diffraction.

The steps are as follow :

1) We begin with a rectilinear wave fron* in open sea and
we locate on it “"particles" uniformly distributed (the
distance between them can be elected by the user).

2) At a given time we calculate the new position of each
particle advancing in a straight line in the direction of
the velocity on its former position.

3) In the new position we calculate the refracted or
diffracted direction and the new velocity as well as the
other parameters of the wave in the point.

4) As we don’'t know exactly the depth in the new point we
interpolate using Covering Circles (previously determined
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with the points where we have depths measurements) and
Sibson’s interpolation.

5) If more detail is needed the new point can be added to
the set and their corresponding circles added.

6) To obtain the modified wave front we draw the line
passing trough the particles on their new position and we
repeat the procedure as many times as needed.

7) The depths are modified using the formulas above to
calculate the removal or deposition of sediment using as
area the Voronoi tiles of each point.

8) When a new wave front comes, it finds the sea bottom
modified by the former one.

Figure 2 The wave front bullding
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ADVANTAGES

Our method means faster computations and less storage
requirements as well as it has good results due to its
new interpolation procedure.

Using the Covering Circles we can do several Jobs with
the same procedure, for instance we use the same
procedure to locate a point and to build the circles as
well as to calculate areas for interpolation.

As it is a local algorithm it can be used in parallel
configurations ( although this has not been implemented
yet ).
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Effect of the Length of the Estuary on its
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ABSTRACT

It is witnessed in the case of Rotterdam Waterway [ 1 1, that
excessive dredging for constructing the Europort harbor led to
a change in the estuary boundary geometry configuration, (viz.,
L/H ratio) and the estuary characteristics. In the present
study an attempt is made to assess the effect of boundary
geometry, i.e., ratio of length of the estuary, L to tidally
averaged depth, H, on various parameters of the estuary which
may affect the characteristics of the regime. The above
approach is sought to be validated in the light of the changes
in the estuary characteristics after dredging the Rotterdam
Waterway.

INTRODUCTION

Man's intense utilization of the marine environment occurs in the
estuary. The experience in the past few decades illustrates the
growth of the developmental activities in the estuary regions.
For whatever may be the purpose of the developmental

activities, i.e., dredging for navigation, waste disposal,
selective withdrawal of water of specified quality, etc., a
knowledge of ambient flow conditions, i.e., space-time

distribution of salinity for a given tidal input and fresh
water inflow is required. Such studies will help in choosing
the place and time for withdrawing fresh water with known and
acceptable salinity level.

Many of the world's seaports are situated on estuaries and
access to them depends on maintaining navigable channels of
sufficient depth. The promotion of trade and industry has led
to large-scale alteration of the natural balance within
estuaries by alteration of their topography, for providing easy
access to large ships and leading to large-scale pollution,
with industrialization and population growth. Deforestation of
the land leads to increased run-off from the land and flashy
floods and increased sediment load in the rivers which may be
deposited in the estuary regions leading eventually to the
alteration in the boundary geometry.The form of the estuary may
constantly alter by erosion and deposition of sediment. It is
essential to understand the effect of these changes in the
boundary geometry on the characteristics of the flow in the
estuary for a planned development.

Pritchard [ 4 1 considered estuary depth and width to be
important parameters controlling its characteristics in the
sequence, If the river flow and tidal range are kept constant



220 Computer Modelling for Seas and Coastal Regions

and the estuary width is increased, the ratio of tidal volume
to river flow is changed, the result of which is similar to a
decrease in river flow. This leads to a greater degree of
mixing in the estuary. Similarly, increasing the depth by
dredging will decrease the ratio of river flow to tidal flow,
but the effect of this will be offset by decreasing the
effectiveness of vertical tidal mixing leading to a greater
degree of stratification in the estuary.

In the present study, an attempt is made to assess the
effect of boundary geometry, i.e., ratio of length of  the
estuary, L to tidally averaged depth, H, on various parameters
of the estuary which may affect the characteristics of the
regimen. The above approach is sought to be validated in the
light of the changes in the estuary characteristics after
dredging of the Rotterdam Waterway.

The field data of Rotterdam Waterway was analyzed by
Harlemanzand Abraham' on llneés similar to those of Ippen and
Harleman™ . Ippen and Harleman conducted a series of salinity
intrusion tests at the waterways experiment station (WES) ,
Vicksburg. The studies of Ippen and Harleman dealt with
the partially mixed estuaries and developed correlation between
paraneters which reflect the characteristics of the regimen.
The estuary numbers of Rotterdam Waterway field conditions for
the year 1908, when the estuary was natural and undredged were
within the range of those of WES flume studies. The field data
of Rotterdam Waterway for the year 1958 was within the range of
the extrapolated values of WES flume studies and the
predictions from the analysis were found to be satisfactory.
However for the year 1963, the analysis was found to deviate
from the trend of the earlier results. The deviation was
attributed to change in the mean water depth due to dredging
which might have affected the characteristics of estuary
regimen, viz., hydrodynamic conditions and salinity transport.
The dredging not only effects the boundary geometry, i.e., L/H
ratio, but also other dimensionless parameters, viz., fresh
water Froude number and amplitude ratio. However, observing
that the WES flume studies were conducted for a range of fresh
water Froude number and amplitude ratios and for only one L/H
ratio (=654), the deviation of the field data can be expected
to be dependent on the change in the boundary geometry
configuration (L/H) based on the dimensional considerations.

The estuary is assumed to be an ‘'idealised estuary' as
termed by investigators at M.I.T. (USA), which 1is convenient
and suitable in the present study. A time varying
one-dimensional numerical model for hydrodynamics and salinity
transport in rectanqular idealized estuarine reach is used. To
be able to run the 1-D numerical model, some basic data
consisting of tidal input at the seaward boundary, the fresh
water inflow at the upstream and maximum salinity at the
downstream end need to be known. First two are known from the
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quasi-steady-state setting and are independent in nature, but
the maximum salinity at the estuary mouth can be known only
from laboratory experiments after cquasi-steady-state is
believed to have been attained inthe given setting, as was done by
2 . . .
Ippen and Harleman . For a general application of a numerical
run the correlation given by Praveen, Murthy and Chandhra is
used to evaluate maximum salinity.

To understand the effect of L/H ratio on an estuary
several 1-D numerical runs are taken with three L/H ratios,
viz., 654, 1308 and 1962 approximately equal to X/6, X/3 and
A /2, respectively, where A is the wave length of the tidal
wave. The combination of fresh water Froude numbers (0.005,
0.01 and 0.014) and amplitude ratios (0.2, 0.15 and 0.1) are
chosen for the study. The downstream boundary condition during
flood flow, viz., the maximum salinity is esti.matgd from the
correlations given by Praveen, Murthy and Chandhra .

EFFECT OF THE LENGTH OF THE ESTUARY ON THE DEGREE OF
STRATIFICATION

The significant non-dimensional parameters representing the
degree of stratification, viz., stratification number, G/J,
Pritchard number, P:.’ Estuary number, [E and densimetric estuary

number, IED are evaluated from the results of the numerical

runs. The variation of these dimensionless parameters with L/H
ratio for a given set of fresh water Froude number and
amplitude ratio are given in Table 1. From the Table 1 it can
be observed that the values of above dimensionless parameters
decrease with increasing L/H ratio indicating that the degree
of stratification increases with increasing L/H ratio. However,
such a trend is not clear in the comparison of stratification
number, G/J for varying L/H ratios. The evaluation of
stratification number involves the estimation of wave number,
1 and damping coefficient, p from the correlations wusing the
numerical results. The possible reason for this aberration 1is
attributed to the approximate estimation of wave number, k and
damping coefficient 1 from the correlations developed for the
evaluation of stratification number.

It is observed that the nodes corresponding to high water
level and low water level form only for the lengths 654' (A/3)
and 981' (A/2), following the general trends observed in the co
oscillatory tidal flows. However, due to the damping effects in
the flume conditions, the nodal formation is of impure nature
not forming at mean water level. The deviation from the nature
of pure nodal formation is however predominant in the cases of
higher amplitude ratios and only marginally affected by the
fresh water Froude number and length of the estuary. The
temporal variation of sectionally averaged velocities at the
estuary mouth are compared and given for the data of Test 14 of
fresh water Froude number, 0.005, and amplitude ratio, 0.2, for
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various L/H ratios in the Fig 1. It is observed that the
intra-tidal variations of velocities at the estuary mouth
decrease with the increase in the L/H ratio. It is observed
that the maximum ebb velocity at the estuary mouth varies only
marginally with the length of the estuary from 327' to 654'.
However, the maximum flood velocity is observed to rapidly
decrease from 327' (A/6) to 981 (n/2). The effect of the
length of the estuary on the longitudinal variation of
velocities at the characteristic conditions of maximun flood
velocity (MFV) and maximum ebb velocity (MEV) at the estuary
mouth for WES Testl4 are shown in Fig 2. Irrespective of the
direction of the flow at the estuary mouth, the upstream region
is observed to have ebb velocity due to the fresh water inflow.
. It is further understood that for the estuaries of large
lengths and small fresh water Froude numbers, the upstream
reach 1is in the flood flow conditions, despite the
characteristic of MEV prevailing at the estuary mouth. Further,
it is observed that in the cases of larger lengths, beyond a
certain distance from the estuary mouth, the velocities vary
only marginally within the tidal period and more so when the
amplitude ratio is small.

The temporal variation of sectionally averaged salinities
at 40ft., 80ft. and 120ft. are compared for various L/H ratios,
for the data of WES flume Test 14, in the Fig 3. Following a
trend similar to that in the convective terms, the intra tidal
variation of salinities are observed to decrease with
increasing L/H ratios in the down stream regions. The maximum
intrusion lengths are observed to increase with the length of
the estuary. However, beyond certain length of the estuary,
the length of the estuary is inconsequential and the maximum
intrusion length remains to be unaffected by it.

MULTIPLE CORRELATION FOR MAXIMUM INTRUSION LENGTH

An attempt is made to express the maximum intrusion length,
X in temms of readily computable bulk parameters, derived

intru

from the dimensional considerations. The functional
relationship for the salinity intrusion in an estuary can be
written as

X ntru [ C t a Uf L ]
= f rmr g’ I T t W TR (l)
L Coey T'H YaH ' H ™
where
X longitudinal distance from estuary mouth (measured
landward)
t time elapsed since beginning of the tidal cycle (taking

as beginning of the ebb tide)

length of the flume representing estuary
constant depth of water in estuary

amplitude of tidal variation at the estuary mouth
tidal period

He o
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0, velocity of fresh water inflow
Cocn the ocean salinity
n. Manning's roughness coefficient for estuary

Assuming n . asa constant, the maximum intrusion length, S

is defined as the distance between the estuary mouth and the
point at which the salinity is at least 1% of the ocean
salinity during high tide. Hence the eq(l) can be rewritten as

xi. neru o £ a Uf E (2)
L - ﬁ r Vg—H r H ------
The maximum intrusion length, x obtained from

Lntru

numerical runs corresponding to the chosen data are used to
develop a multiple correlation between x /L and Uf /YgH as a

Lmtru
parametric variable of a/H for various L/H ratios as shown in
Fig 4. The effect of the length of the estuary on the
longitudinal salinity gradients was observed to be significant
at lower fresh water Froude number (=.005) than at the higher
Froude number (=.014). This effect is reflected in the
intrusion lengths, as the intrusion length proportionally
increased with the length at lower fresh water Froude numbers.
It is observed that as the length of the estuary increases,
beyond a certain length of the estuary, the maximum intrusion
length essentially depends on fresh water Froude Number and
varies only marginally with the amplitude ratio and length of
the estuary.

PROTOTYPE VALIDATION

An attempt is made to verify the wvalidity of the multiple
correlations developed in the Fig 4 for the maximum intrusion
length, x in terms of readily computable bulk parameters.

The real estuaries for which the detailed field data are
available in literature, viz., Delaware, Hudson and Rotterdam
Waterway are chosen for the comparisons. The correlations in
the Fig 4 are in terms of bulk parameters,viz., fresh water
Froude number, amplitude ratio and L/H ratio. The bulk
parameters corresponding to the field data are to be evaluated
in dimensionally similar conditions of WES flume type to avoid
extrapolations of graphical correlations.

Assuming the bed shear generated near the bottom of the
flume is under dimensionally similar conditions as that of the
real estuary, the dimensiogal similitude between model and
prototype is shown by Yalin® to be governed by Froude number,
Strohaul number and a/H ratio. The dimensional parameters can
be writtgn as

U
m

H

m P

luci

Q
Q
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a a,
i S - PP (4)
m 3
U T uT,
T = I e (5)
ra P

where subscripts m and p represent model and prototype values
respectively.

The irreqular width and depth of the real estuary is
schematized, considering the mean width over the length, and
tidally and longitudinally averaged depth. The evaluation of
fresh water Froude number and amplitude ratio of the real
estuary is simplified due to the above schematization. The
scale distortion in the model (L /H , where r represents the

ratio of variables between model and prototype) can be
evaluated from the dynamic similarity of the characteristics of
the tidal wave of the real estuary with that of the flune,
represented by Strohaul number in the eq(5) as

LT H1/2

momop

LTH:I./Z
ppm

g.':I::l 3I."
i
2

The bulk parameters that are evaluated for the
dimensionally similar model of the estuary are superimposed on

Fig 4 to estimate the maximum intrusion length ratio, x.mlm/L.

The comparisons between the prototype data and the estimated
values from the Fig 4 are given in Table 2.

The estimated values of maximum intrusion length, Xmuu

from the correlation in the Fig 4 are observed to be within 9%
error when compared to the field data. However the estimated
values of X iea for the field data of Rotterdam Waterway of

year 1963 were observed to be in an agreement better than
others since the extent of extrapolation needed for the
comparison is less than those for other field data. The reason
for the disparity can be attributed to the idealization of the
natural estuary and the non uniform bed roughness.

APPLICATION OF THE ANALYSIS TO THE FIELD DATA OF ROTTERDAM
WATERWAY :

On lines similar to those of Harleman and Abraham', a
correlation between stratification number and estuary number is
developed with L/H ratio as parametric variable as
shown in Fig 5. It can be observed from the correlation in Fig
5 that the dimensionless parameters G/J, and [E are uniquely
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correlated for smaller lengths of the estuary (327'), however
as the length of the estuary increases some scatter is
observed. This indicates that the correlation between G/J vs [E
is possible up to certain length of the estuary beyond which
the relationship among the above dimensionless parameters may
not be uniquely defined though the trend continues to be the
sane.

Following the imalysis of Rotterdam Waterway data by
Harleman and Abraham , a correlation between estuary number I[E
and aB/Uo, with L/H ratio as a parametric variable is defined

as shown in Fig 6. The effect of the L/H ratio on the
correlation between [E vs 4:7B/Uo is observed to be significant.

The correlations developed in the present studies are
applied to the field data of Rotterdam Waterway on lines
similar to those of Harleman and Abraham considering the
effect of L/H ratio. The waterway went through an overall
transformation from an undredged natural waterway in 1908 of
mean depth, 5.8m to a significantly dredged waterway in 1963 of
mean depth, 1lm. Further it ishgbserved that thS fresh water
inflows have increased from 22"~ July 1908 to 19 March 1963,
with a slight dip on 18 April 1963'.\ dThe amplitude {%tio is
also be observed to decrease from 22 July 1908 to 18 April
1963.

The field data of Rotterdam Waterway is superimposed on
Fig 6 to verify the applicability of the correlations which
include the affect of L/H ratio as a bulk parameter. The
estimated values of aB/Uo from the correlation in the

Fig 6 are compared with the field data and the estimated values
of Harleman and Abraham as given in Table 3 . A significant
improvement in the prediction of the field data in the present
study can be observed when compared with those of Harleman and

Abraham .
CONCLUSIONS

1) It is observed that the increase in the length of the
estuary leads to a greater degree of density stratification in
the estuary.

2) The impure nodal formation and their deviation from the pure
nodes is essentially governed by the amplitude ratio. For
larger lengths of the estuary, beyond a certain distance form
the estuary mouth the velocity remains unaffected by the
conditions at the estuary mouth.

3) An attempt is made to express the maximum salinity intrusion
in terms of readily computable bulk parameters. The multiple
correlation thus developed is verified with the field data of
Delaware, Hudson and Rotterdam Waterway.

4) The validity of the correlations in Fig. 6 is verified with
the Field data of Rotterdam Waterway. An improvement in the
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prediction of the field data in the present study can be
observed when compared with those of Harleman and Abraham .
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SYMBOLS
a amplitude of tidal variation at the estuary mouth
B The distance between estuary mouth and a section within

the ocean at which the salinity is always equal to the
ocean salinity

G Rate of enerqy dissipation per unit mass of fluid

H constant depth of water in estuary

J Rate of gain of potential energy per unit mass of fluid

L length of the flume representing estuary

T tidal period

t time elapsed since beginning of the tidal cycle (taking
as beginning of the ebb tide)

X longitudinal distance from estuary mouth (measured
landward)

C, Maximum salinity that can occur at estuary mouth

Coen the ocean salinity

Fo Froude number corresponding to maximum velocity (= U°/7§H)

n Manning's roughness coefficient for estuary

Pt Tidal prism

Q Fresh water inflow

U, velocity of fresh water inflow

U, Maximum flood velocity at the estuary mouth

o 2n/T

E Estuary number

IED Densimetric estuary number

Ap Density difference between fresh water and sea water

D Fresh water density
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TABLE 1: VARIATION OF STRATIFICATION NUMBER (G/J), PRITCHARD
NUMBER (P,), ESTUARY NUMBER (E) AND DENSIMETRIC
ESTUARY NUMBER ([E )

G/J P E 3

U a t D

_f |° L(ft) L(ft) L(fD) L(ft)

JaH |H |327]654|981] 327|654|981| 327] 654] 981| 327] 654|981
.005].20{167]|157|123{11.2|9.2|7.8].359]| .271| .152|16.2| 12.5|7.1
.005(.15/99 [107| 71| 9.0]7.5{5.9|.186}.151}.069| 8.5 7.1!3.3
.005|.10]43 | 51} 27| 6.4|5.9]4.0/.073].071|.021} 3.3| 3.4{1.0
.010}.20/95 | 90} 63| 5.4|4.2{3.6|.176|.133].075} 8.6] 6.7]3.7
.010].15{54 | 50| 39| 4.3/3.5{2.7].091|.076|.034] 4.5/ 3.8{1.7
.010].10}22 | 25{ 16| 3.0/2.7|1.8|.035|.035|.011] 1.8 1.8]0.5
.014|.20}69 | 73] 46| 3.7|2.9|2.4].124|.096|.051| 6.1| 4.6|2.5
.014|.15{39 | 40| 23| 2.9}2.4j1.8]|.062{.054|.024| 3.1 2.6/1.2
.014}.10]17 | 20] 10| 2.0{1.7]1.1]|.024|.024}|.008] 1.2| 1.2{0.4

TABLE 2: ESTIMATION OF MAXIMUM INTRUSION LENGTH, x . FOR THE

FIELD DATA
Estuary U £ a L/H |Intrusion Length
—_ - Ratio, /L
YaH H Actual |Estimated
Delaware .00065 | .095 | 2872 0.5 0.54
Hudson .00087 |.076 |2804 0.6 0.52
Rotterdam 1908 .0159 |.130 {1364 0.282 0.32
Waterway 1956 | 0188 |.074 1077 | 0.353] 0.28
1963
March | .023 .067 | 991 0.315 0.31
April L0173 |.067 | 991 0.295 0.31
THE

TABLE 3: ESTIMATION OF 4:>'B/UD FROM THE OORRELATIONS FOR

FIELD DATA OF ROTTERDAM WATERWAY

Date Field Harleman \E:‘l:tlxg‘a;igm
Data and 1 Fig. 6
Abraham R
26'" July, 1908 1.23 1.35 1.38
22™ June, 1956 1.70 1.70 1.90
18'" March, 1963 3.45 1.80 2.25
19'" April, 1963 2.90 1.65 2.10
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FIG.1. COMPARISON OF SECTIONALLY
AVERAGED VELOCITIE AT THE
ESTUARY MOUTH WITH VARYING
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U (ft/s)

-0-4 -/,’:/’ —— MAXIMUM FLOOD
V’ VELOCITY (MFV)
7 —-—-— MAXIMUM EBB

-0-8F VELOCITY (MEV)
0 327 654 981
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AND MEV FOR VARYING LENGTHS OF

THE ESTUARY ( FRESH WATER PROUDE
NO. =0-005, AMPLITUDE RATIO = 0-2)
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FIG.3. COMPARISON OF SECTIONALLY AVERAGED
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ABSTRACT

The equations required for modeling three dimensional
hydrodynamics (space two dimension and timed 1in a
shallow coastal lagoon are derived from the three
dimensional Navier-Stokes equation and Continuity
equation by integrating and taking the average along
water depth. The wind stress at the surface, the
friction stress at the bottom, the Coriclis parameter,
eddy viscosity and shore line geometry are
incorporated in the mathematical model. Both the
analytical and numerical approaches cannot be used for
solving the governing Navier-Stokes equations from the
existence of the nonlinear convective terms and
complexity of equations and geometry involved, the
time dependent shallow water equations are solved
using Galerkin’s method. A finite element formulation
for solving the shallow water equations is presented
for the prediction of wind-driven and tidal currents
in a coastal lagoon.

INTRODUCTION

Starting from the theory of hydrodynamics, the problem
is to develop numerical methods which can be used to
reproduce a real word, that means, to reproduce the
observed or measured data with the objective to learn
something about it. If the model can represent
successfully the real world the numerical results of
the model must show the results of the actions that
have been simulated, it means that is possible to
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understand what is happening in the situations of a
real world without these situations really occurring When
the validity of the model has been proved, tLhis
hydrodynamics model may finally be used to forecast
the dynamic processes of the coastal lagoon or any
other coastal region, finding its practical
application.

THE HYDRODYNAMICS DIFFERENTIAL EQUATIONS OF CONTINUITY
AND NAVIER-STOKES

The two—-dimensional equations needed for shallow water
model ing have been derived by Pritchard (11, Proudman
[2], Defant [3] and others. A careful development is
given by Pinder and Gray [47. The devel opment
presented in this paper follows along the same lines
as their work.

The set of equations in a Cartesian coordinate
system are derived under the assumption that the
vertical acceleration and the shear stress are
negligible compared to the gravity and vertical
gradient of the pressure of the incompressible fluid.
This set of egquations take the form (the kind of
lagoon that will be considered is shown in cross
section in fig. 1.D):

au av aw

o " Tay Y e T ° €12
"g%“ + U gi + v g; + W g: — fv + g gi
- t} (e "’;;Y v 02y =0 @
_:3 (3';;/(x "’;;V + "Ta;z } =o0 <P
_:__).__.3.22.4-9:0 4>
Where the notation is as follow:
u, v, w - velocity components in the x, vy, =z

directions, respectively.
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t - time.

o — water density.

f — Coriolis parameter (2w singd.

w — Earth’s angular velocity.

¢ — latitude.

g — gravity acceleration.

p — pressure.

THX 5 Txy , PPN Tyz - bottom friction shear

stresses.

1--2“2”1_,_.:0

\_/u(

=X

Figure 1. Transversal cross section of a coastal

Lagoon

THE DEPTH INTEGRATED FLOW MODEL

Integrating an arbitrary depth (z) over the free
surface (z={2, assuming that the pressure on the free
surface is equal to the atmospheric pressure over the
surface palx, ¥y, LD, i.e.

p - pa = pgC{—-zD sl

and taking the average of eqguations (1)0-C43 with the
following two boundary conditions: (i) the stress at
the surface due Lo the friction of the wind is
represented by a constant function of the wind speed
(KD, the wind velocity (W) and the direction across
the lagoon Cel. (iid the friction stress at the bottom
is represented by the Chezy coefficient. Then the
equations take the form:
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oC | 8CHW ACHVD

3t + > = 0 [gsp)
2
au ) au au a . KW .
—3t + U + V 3y + g : — fV - —g— cose
2 2.1-2 2 2
gCU™+ V™D _ auy oy -
— 2 U v 6x2 + axz o 7D
av v v L K'w )
e el e v B fU — —p— sing
2 2.4-2 2 2
_gluU™+ v™3 o ay ay _
——czﬁ—~—- \% v ayz + _5§2 O 8

The notation used in the above equations is:

U, V - depth-integrated components of the velocity
" in the x, y directions, respectively.

K - constant ceoefficient function of wind speed.

W - wind velocity.

© — angle between the wind velocity vector and the
X—axis.

< - Chezy coefficient.

v - cinematic viscosity Cuv=e/pd.

e — eddy viscosity.

H - total distance from the bottom to the surface
CH=h+{>.

h - distance from the mean water level (MWL) to
the bottom of the lagoon.

{ — surface elevation from MWL.

Three unknowns variables are present in this
system of equations (6)-C(8>. Now the problem is to
solve these equations when the initial conditions of
the wvariables ¢, U and V and appropriate boundary
conditions are given.

A direct method of solving this set of nonlinear
partial differential equations is not feasible and the
finite difference method faces difficulties by the
existence of the complex geometrical configurations
and boundary conditions so it is necessary to use
nonuniform nets.

In this type of problems the finite element method
CFEM> has been used successfully in the last few
vears.
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FINITE ELEMENT FORMULATION

An approximate solution to the equations (83-(8) can
be constructed by Galerkin’s method, which is' a part
of the Weighted residuals method [8]. Galerkin’s
method uses the approximation of variable functions as
functional combinations of weight functions of the
residuals and stipulates that the residuals are
orthogonal to the weight functions. That means that
the integral of the weighted residuals, over the
region of interest, must be zero [7].

The finite element solution of the Continuity
equation (6) and Navier-Stokes equations (72 and (8D
is obtained by choosing a simple trigonometric element
and a linear interpolation function as follows,

M

£ = T Liltdplx,yd = ¢mlm cad
i=1
M

U= FUCLIHCX, YD) = ¢mUm c10d
L=41
M

V = L ViCtIgiCx,yd = ¢mVm C11>

t=1

where M is the number of nodes in the FE domain and

Plxi, yid = —IEK Cai + bixi + ciyid
ai = (xXjyk - Xkyjid /2A
bi = Cyj — ykd 2A
ci = (xXk — XjD/2A
Analogous equations as above can be aobtained for j and
k, where i, j, k are the numbers associated to a

triangle and A is its area given by,

1 i Y
A = det 1 Xj vyi|] = (xXiyj + Xjyk + xXkyid
1 xk  yvk

Y

~ (xiyk + XjyLv + Xkyjd

=A

cjbi - cibj c1ad
) 2 2 12 . ,
Making CU + V'O = W and applying the Galerkin’s
condition to equations (B8)-(8):
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Dnm{m = — Enm Hm Um -~ Frnm Hm Vm = "f«({md> 13D
DnmUm = — Angm Ug Um - Bngm Vg Um + Dnm fm Vm — Enm{m
— i 2 . —
Dnm Km ;\:;n Cos g Dh;lx:nWm Um + Crm Um = £2¢Umd
14>
DnmUm = — Angm Ug Vm - Bngm Vg Vm - Dnm fm Um - Fnm{m
= 2 . -
Dom_Km meﬂ Sib em Dnl_rlanm Vm + Cnm Vm = £3alVmo
c18d
Where the notation is as follows:
bm12 (n = i,j,k; n = 1D
Angm = IA¢“¢“¢"""‘ 5= 1 bmad Cn = i,j,k; n # 1D
cmsl2 Cn = 1i,j,k; n = 1D
Bngm = JA“’“WW"’ dA = 1 em24 n = i,j.k; n = 1D
Cnm = [ Con,x@m,x + ¢n,y¢m,yd> dA = =~ Cbnbm + crcmd
4 4A
gA-6C%  Cn o= m

= 2z -
Dnm = gDnm.C g-C I}angbm dA { gA12C% Cn o* md

Enm = gEnm = g [ ¢ngm,x dA = gbm/6&
A

Frnm

]
h
]

gFnm g I dngm,y dA Jgem B
A

Ensambling system into a matrix form, we obtain,

-t .
Mi; _g%‘ = £4CL0 C16D
. duj .
Mij “Et%' = f20UpD <17
. dVj ,
Mij —EL = faCVp 18>

The coefficient matrix M of the resultant
algebraic equations are symmetric, non-singular,
positive definite and banded. These properties suggest



Computer Modelling for Seas and Coastal Regions 237

that the OGaussian elimination method may be stable
[101, however, Gradient Conjugated method is more
practical because reduces the computing time and
improves the convergence [12]. Must be taken account
that the boundary conditions must be incorporated to the
system before it can be solved preserving its symmetlry
[4,86].

INITIAL AND BOUNDARY CONDITIONS

INITIAL CONDITIONS

Because the water motion is independent of initial
conditions after a certain time and becomes influenced
only by the specified oscillations of the boundary
values, computations can be begun from an initial
condition of =0, U=0 and V=0 at all points [4,3].

BOUNDARY CONDITIONS

In coastal lagoons there are two different types of
boundaries: the fixed boundary given by the shore line
and the open boundary which is given by ’artificial’
limits in the contacts with other water bodies, like
the mouth of the lagoon Ccontact lagoon-sead or the
mouth of a river Ccontact lagoon-riverD.

On fixed boundary U=0 and V=0.

On open boundaries, either the normal velocity or
the value of { must be specified.

In the contact lagoon-sea, the water level is
specified according to a sinusocidal function: C=A
sinwt, where A, 1is the amplitude, w=2n-T, 1is the

angular velocity, T, is the period of the tide and t,
is the time.

In the contact lagoorn—river the boundary
conditions are specified by the hidrogram at time t.

The convective terms play an important role in the
description of the dynamic processes in shallow waters
therefore they must not be neglected in the numerical
model. Unfortunately, convective terms cause numerical
disturbs in the model which have to be stabilized by
chosen an adequate time interwval, At.

The convective terms in open boundaries are:

oau_ . o, v_ - O normal to the open boundary.

ax ay
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ITERATIVE METHOD TO SOLVE THE FINITE ELEMENT SYSTEM

In the system (162-C18), the time derivates {, U and V

must be differentiated over a time interval, At to
obtain:
.4 1 ~ O . _
[ Mij] X C {YJ}t+At — (Y,}t > = £CYP c1a0
from which
[Mm(n}f*m = [MyICYy + £CY)

Note that Y represents {, U and V for each one of
the equations.

From the known solution at t, estimates are made
for £, U and V at t+At. These estimates are used to
make successive approximations with [141,

[Mi.j](Yj}H

— R 1 Ny .
A S [M"J]\YJ}t + ——Z—At 1(Yj)t

+ -1 At rcyYjd° 20>
t + At

2 -

Through each iteration, the prediction of {, U and
vV is refined at t+AL. That is, the preceding
approximation can be used variocous times to produce a
better approximation of ¢, U and V. It must be
understood that this process does not necessarily
converge to the right solution but it does to an
approximation with a finite truncate error.

A criterion for stopping convergence of the
equations is given by [11,14]1

i j-1

- - Yt+At - Yt+At
‘ O.I j-i
t+AL

where j-1 and j are the result of the preceding and
present iterations of equation (20D3.

Noteworthy that the error some times become larger
as the iterations advance, specially for large At.
This is the reason for which we must avoid the general
conclusion that an additional iteration improves the
result. However, for a At small enough, the iteration
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must eventually converge in a single value; but, which
is the adequate At to use? A stability criterion is
the one of Courant-Friederich-Lewy CCFLD [131:
At =mi nCctAx Cghd >, where ct, is a di mensizonl ess
coefficient from friction water-bottom C(ct=g-CD and
Ax the distance between two nodes.

THE RESULTS

The model above present was applied for the coastal
lagoon ’La Mancha’, Mexico. The area of the lagoon was
subdivided into 78 triangles d{figure 2). The mean
water depth at each one of the 60 nodal points which
compose the net was prescribed. There are three nodes
Cmouth of lagoon) where the water level has to be
specified d(open boundaryd. After a simulation the
lines with the same tidal range are shown in figure 3.
In figure 4 the depth (0.8m) is shown darker. These
are particular results of the simulation, exists
general results.

Figure 2. Division of the La Mancha Lagoon into 7e
triangles with 60 nodal points
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Figure 3. single Lines with the same tidal range

Figure 4. Various lines with the same tidal range

CONCLUSIONS

The type of problem in the mathematical modeling
present in this paper can be summarized as follows:
given hydrological parameters, inputs, initial and
boundary conditions, sol ve the set of partial
differential equations which govern the water flow in
a shallow water coastal lagoon.

Some more study is required to analyze the effect
of the distinct parameters in the hydrodynamics of the
lagoon, being possible to simplify the model making it
more efficient.



Computer Modelling for Seas and Coastal Regions 241

REFERENCES

1. Pritchard, D.W.,Estuarine Modeling: An Assessment,
CEd. Ward, G. H, Jr. and Epsey, W.H, Jr.D,
Nat. Tech. Inform. Serv. Publ., 1871.

2. Proudman, J. Dynamical Oceanography Methuen,
London. Willey, New York, 189853.

3. Defant, A. Physical Oceanography Fergamon Press,
Oxford, Vol.1, 19861.

4. FPinder, G.F. and GCray, W. G. Fintte Element
Simulation in Surface and Subsur face Hydrology
Academic Fress, New York, 1977.

5. Weare, T.J. ’Finite Element or Finite Difference
Methods for the Two—dimensional Shallow Water
Equations?® Comput. Methods. Appl. Mech. Eng., Veol.7,
pp. 381-357, 1976.

8. Chung, T.J. Finite Element Analysis in Fluitd
Dynamics Mcgraw—-Hill, New York

7. Leonhard, J. W *Finite Element Analysis of
FPerturbed compressible Flow’® Int. Journ. Num. Methods.
Eng. Vol. 4, pp. 123-132, 1972.

8. CGrotkop, G. ’Finite Element Analysis of Long-Period
Water Waves’® Comput. Methods. Appl. Mech. Eng., Vol.Z2,
pp. 147-15%, 1973.

9. Ramming, H.G. and Kowalik, Z. Numerical Modeling of
Marine Hvdrodynamics: Applications to Dynamical
FPhysical Processes Elsevier, Amsterdam, 1880.

10. Cheng, R. ’Numerical Solution of the Navier-Stokes
Equations by the Finite Element Method’® The Physics of
Fluids, Vol.15, pp. 2098-2105, 1972.

11. Burden, L.R. and Faires J.D., Numerical Analysis
FWS, Boston, 1885.

12. Traversoni, L., ’Overlapped Conjugated OGradient
Method®, Internal Report, UAMI, 1990.

13. Yue, J. *Selective Lumping effects on
depth-integrated Finite Element Model of Channel Flow’
Adv. Water Resources, Vol.l12, pp. 74-78, 1989.



242 Computer Modelling for Seas and Coastal Regions

14. Ortega, J. and Rheinboldt, W., Iterative Solution
of Nonlinear Eguations in Several Variables, Academic
Press, New York, 1970.



Finite Element Modelling of Moving
Boundary Problems in Estuaries and
Coastal Waters

T.H. Lan (*), A.G. Hutton (**), J.H. Loveless (*)
(*) Dept. of Civil Engineering, University of
Bristol, Bristol, U.K.

(**) Berkeley Nuclear Laboratories, Berkeley,
Gloucestershire, U.K.

ABSTRACT

A method and algorithm to deal with moving boundary problems in
shallow water is proposed in this paper. A characteristic feature is
that the governing equations are solved by means of a transformation
to the original computational region (mesh) at t=to. This is
attractive as it uses established numerical methods for fixed-grid
problems and has no limitation on the boundary movements. The utility
of the approach is demonstrated by application to a one dimensional
problems of side to side water sloshing in a canal with parabolic
bathymetry.

INTRODUCTION

Many mathematical models have been developed and used to study
estuarine hydrodynamics. The majority of these models are
based upon finite difference methods. Few finite element based models
have yet evolved into practical, widely used tools. However, this is
a CFD application area for which finite element methodology offers
considerable attractions. Complex shore-line  geography can be
readily and accurately modelled and the mesh canbe arranged to
track gradations in bathymetry. Furthermore, since the mesh design
is not restricted to regular topologies, the mesh can be focused
by non-structured refinement to resolve local details such as sources
of pollution. This means that features ranging in scale from metres
to several kilometres can be modelled by a single mesh.

A recent programme of research undertaken at Bristol Polytechnic
in collabration with Nuclear Electric (NE) was designed to explore
this potential in some depth. The outcome was an implementation of
estuarine and coastal modelling in NE's general purpose finite
element based CFD Suite, FEAT, (Knock, 1990). This has proved very
successful both in terms of performance and flexibility on a range

of validation problems, including a propagation of a depression
in a tank and pollution in the Severn estuary. However, Knock’s
study assumed a fixed coastline , yet such an assumption

becomes invalid in regions with large tidal flats which are
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submerged only intermittently. Under these circumstances,in order to
determine water level fluctuations and currents one needs to know how
the coastline changes as the tide advances and recedes.Indeed,in some
problems, like the flooding in estuaries, the movement of the
coastline is actually the purpose of the study.Various moving
boundary models have been developed and they fall into two groups,
the fixed grid type and the deforming grid type (Lynch, 1980).

« The fixed grid type 1is a straight forward application of
existing methods. In each time step, elements with at least one
dry node are removed from the area of computation. This method was
first used by B. Herring (1976). It has the disadvantage of not
following the water boundary closely and also the difficulty of
approximating the physics at the moving boundary.

* The deforming grid method has also been used. In this method, the
boundary condition (where water depth, h=0) provides the necessary
information for the location of the new boundary position at each
step of the computation. The finite element nodes on the boundary
are moved consistently with the local kinematics and sea floor depth
so that the nodes always remain on the edge of the water body. This
means the elements with one or more nodes on the boundary keep
changing their shape and size with time. Lynch developed the method
to account for the effects of grid deformation.However, when this
method is used to solve problems involving very large movements of
the boundary, the elements can become excessively distorted .

Futhermore, when certain classes of implicit time stepping
algorithms are introduced, difficulties arise which are associated
with consistent representation of the grid variables at different
time levels. This is particularly the case, when implementing the
predict-corrector algorithm of Gresho et al (1979), which is adoped
in the present work.

These problems can be alleviated by transforming the grid in
time back to its initial configuration and solving the transformed
equations on this grid. In this way the moving boundary problem
becomes for practical purposes a fixed boundary problem. The only
variable which needs interpolation or extrapolation is the bathymetry
, and this has a very clear physical conception and will not cause
any consistency problems. A practical algorithm is developed here
based upon the Galerkin Finite Element Method.

TRANSFORMATION OF THE EQUATIONS

The simplified shallow water equations considered here are:
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éh dum dh

ot " Daxm * Umaxm - ©
dun dun an _
3t " Uaxm * Eaxn - ©

where,

h is the total water depth.

u is the vertically integrated water velocity.

n is the elevation of free surface above a reference
datum.

Denote the gridded (i.e.computational) region at t=to as
Qo and that at time t>to as Qt. Now suppose any point in Qo
with position vector X°(in fixed frame OX) moves to point X
at time t. The X is related to §° by the analytic function.

X=X(X°1) (1a)

Fig. 1 Definition of the Moving Boundary Problem

It should be explained that the point X is not fixed in the
fluid but fixed in the gridded region and at inlet and outlet,we have
X()_(o,t)=)£°. The construction of (la) is considered later. Now define
the grid velocity u® by the relation

oo 8X(X°,t)
B (X_ ,t) = (——T’) .)SO (lb)

Then

t
0 .\ g (o]
X(X ’t)'JtoE (X ,s)ds+Xo 2)
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Now consider a variable ¢ = ¢(2(°,t). We can write

8¢ - [ 3¢ ] { axm°]
“8Xn ‘'t ax8 Jt oXn )t (3)
From (2)
t F)
[ GXZ\ ] = dum (()X ) ds + dmn (4)
8Xn t to 8Xn
where,

3dmn is the kronecker delta.

Eq.(4) defines a 2 x 2 non-symmetric matrix at each point )_§° at
all times.

o [0 - (22 )
8Xn

Then,

¢ _[ 3¢ ] a-1 [0
( ), = [T X, (5)
8Xn 't Xm 0

We must also evaluate (

a¢ =[a¢ ] [6Xm] o 6)
8t x aXmo t x

Now, since _)g=§(_)§°, t),

| a2+ on
dXp + ( ) o dt
aXpOJ at x

After some manipulation, we can get

8X

then dX= [

8Xm", _ 1 g
Bt x = 7l mg 2 @
(0, _ _(0¢ -1 g ., 8¢
Thus (52, - ["‘a]t [ hadt 422 o (8)
dXm =

All the relations required by the transformation of the shallow
water equations are now available. They can be rewritten as:
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éh dun 8h -1 g 8h a-1 _

at * {h axm° * un aXm°} [an =9 ~axm®[ mq = © )
dun dun -1 dm rm-1_ g dun -1 _

7t " 3%m° ] mq %A w0 xm° | mq ~° (10)

These equations must now be solved on the fixed computational
region Qo subject to the following boundary conditions.

Riemann:
uen + 2V gh = ai(t) on inflow.
usn + 2V gh = ai(t), ust = bi(t) on outflow.

Specified height:

h=a2(t) on inflow.
=a2(t), wuot=a2(t) on outflow .

On shoreline:

h=0 on inflow.
h=0, uet = ba(t) on outflow.

n,t are normalized vectors in normal and tangential directions
respectively.

4 l

It remains to construct u, then being available from eq.(4).

Imn
The grid velocity at any instant in time is chosen as the

solution to:

a (3Um + dun ) =0
aXm  aXn° aXm° (1
VX & Qo
Subject to 1f=_u on the shoreline and u_goxl =0 on all other
boundaries ( i.e. uot s fixed by the FE natural boundary
condition). Note that if u is zero on shoreline, then u®=0 and

from eq.(4) f:m= Smn. The equations then reduce to the usual

shallow water formulation.

FINITE ELEMENT FORMULATION

The first stage is to rewrite the equations as an integral
formulation, (Hutton,1974). Two sets of functions are defined in the
area of interest Qo. One is a set of smooth vector functions, Su,used
with the momentum equations and the second a set of smooth Scalar
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functions, Sh, used with the continuity equation, (Knock, 1990).
For the sake of simplicity, the superscript zero notation is
omitted.

The integer formulation can be written as:

(
éh dun m-1 éh --1
gt PAQ* | bhogg [ pd2 | un—ge—[ | pd@
Q Q Q
_ g 6h n-1 _
Vg [ ma pdQ = 0 (12)
1 Q
dun dun --1 an -1
J 3¢ VndQ + | Uage fmq VndQ + | gzo——r~, ° VndQ
Q Q Q
ol uet88R 77! vade = 0 (13)
Q 8Xm mq
\
Vp € Sh ; VVn € Su.
p,v are independent weighting functions.
The following discrete FE representation is now introduced.
p=z prY¥Yr , Vn=Y} Vn,j Wj, Un=z un,j Wj,
r J J
unf= Uni) Wj, h=2 hsYs, H=Z HsYs
J s s
where,
Ys are linear shape functions and Wj; are quadratic

shape functions on mid-side noded elements.
Using Green’s theorem to rewrite the elevation term,the equations
are discretized as:

?:s Asr + hs un,j Bsjr,n + un,j hs Cjsr,n - hs Msr” = 0 (14)
4 8un, j 1
T—Dn + Uq,k un,j Ekji,q — g(hs—-Hs)Fsi,n

- g(hS—HS)FSi?n—Un,j M Y o= - I g(h s -Hs ) YsWi [“-lnmdQ (15)
aQ mn —
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Where: Asr=[ YsYrda ,  Bern=[ ¥s-20L [""! yrag
Cjsr,n= QWJ—g—)Y(:]—I'-:‘;YrdQ , Msr'= a —g—g—;- uq® [-';I;Yrdn ,
Dii=| WiWid®2 , Ekji,q= ka_gg(v_;l [";: Wi da ,
Fsbn =[ Ys—a‘,lj;(;—i' wida | F.%.n=jg Ys[7-) —zg-(v—r; aq ,
Mi" = g—zr%—qu [ -'l;; widQ .

-1 .
f ,qu are values at Gauss points.
mn

COMPUTATIONAL ALGORITHM

An implicit predictor/corrector time stepping scheme is used here.
The predictor is the 2nd order explicit Adams-Bashforth method and
the corrector is the second order accurate Crank-Nicholson

scheme, (Gresho, 1979).

The computational algorithm is :

1. At time level r, suppose we know

r r ,r-1 “r-1
h', h,h * ,h
r r _r-1  r-1
u, u,u ,u
-r
and r
rrrm ub , Atr .

2. Predict h* and l_lp with the predictor.
3. Specifying lf=g_p on the moving boundary, solve eq.(11) to

yield _l_lgp .
4. Calculate

tr+l g gr gPp
ap _ror dum s = 77 dum dum Atr
r mn _fmn * Jtr aXn ° " I-ml'x * { 3Xn ' 8Xn } 2

5. Calculate

t

2_(”1(50,1:) - )_(r(-)go’t) + L:ﬂl_lgdt
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= X0 + (0 wPRT

and hence the bathymetry Hp()_(o ,tr+1)=H(2(”1)

6. Solve eq.(14) (15), using ng (|--|::m)_1 when r+l values are

required to yield the corrected values 1_1“1, h.

7. Return to 3, repeat steps 3 to 6 replacing Ep with 1_3”1 until

certain accuracy is obtained.

NUMERICAL EXAMPLE

A numerical example is shown to verify the applicability of the
present method. The example is a 1-D problem of water sloshing from

side to side in a canal with parabolic bathymetry (Thacker,1981). The

finite element idealization is shown in fig 2. The mesh has 1

element in the X2 direction and 90 elements in the X1 direction.
AB=CD=100m, BC=AD=16000m.

(X1- 7680)° }

The bathymetry is H=10x{ 1 - >
8000

The initial elevation is n = 0.0001x(X1- 7840)
The boundary conditions specified are:

h=0, u2=0 on AB and CD.
u2=0, ﬂ:o on BC and AD.
8X2
The initial time step size is set to 1.0 s. The computed

results of water elevation and velocity (after 554 steps, at
t=20316.2 s =5.72 periods), position of moving boundary CD and change
of time step size with time are shown in Fig. 3 - Fig. 6.

The time step size inceases very rapidly from 1ls, and
keeps around 27 - 98s. With an explicit scheme, the time step

size should be less than At=—£(-——-= 25.1 s ( the averaged water

v gh
depth 5m is used here).

It can be seen that the computed results are extremely accurate.
No instability arises during the course of the computation which
extends for more than 5 periods.
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CONCLUSIONS

A new method and algorithm to incorporate moving shoreline into a
finite element shallow water model has been developed here. A
numerical example shows it gives results which are in good agreement
with an analytic solution. The method is currently being evaluated
against a two-dimensional analytic problem and a practical estuarine
problem of tidal dynamics.
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ABSTRACT

In this paper we solve the shallow water equations by using flux-vector and flux-difference
splitting methods. When the depth of the domain is not constant a source term arises. It
is discretized by using explicit upwind schemes in a similar way to the flux. A conservation
property is introduced as a requirement for the good behaviour of the discretized problem.
Numerical results are presented to compare performances of the different methods.
Subject Classifications: M.R.: 656M99, 76B15.

INTRODUCTION

The shallow water equations are frequently used as a mathematical model for water
flow in coastal areas, lakes, estuaries, etc. Thus they are an important tool to simulate
a variety of problems related to coastal engineering, environment, ecology, etc. (see
Gambolati et al. [5])

In the last years many papers have been devoted to the numerical solution of these
equations by using finite differences and finite element methods. We mention, for in-
stance, Taylor and Davies [17], Kawahara et al. [9], Linch and Gray [12], Zienkiewicz
and Heinrich [19], G<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>